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PREFACE.

THIS volume is intended to be a continuation of that already
published as Part I. in 1882, The time occupied in its pre-
paration has been longer than I had anticipated. This is partly
due to the want of sufficient leisure, and partly also because as
I proceeded with the work new questions to which no sufficient
answers had yet been given seemed continually to arise. The
pleasure and labour of attempting to answer these, however im-
perfectly, bas delayed the book.

Although a large portion of this volume has already appeared
in the latter half of the third edition, yet much of this has been
recast and new illustrations and explanations have been given
wherever they appeared to be necessary. Besides this much
new matter has been added. Exactly also as in the last edition
those parts to which the student should first turn his attention
are printed in a larger type than the rest.

Following the same plan as in Vol. I., the several Chapters
have been made as independent as possible. The object in view
was that the reader should select his own order of study. His-
torical notices and references have been given throughout the
book. But it has not been thought necessary to refer to the
author’s own additions to the subject, except when they have
been first published elsewhere.

In this volume much use has been made of the new symbol

for a fraction lately introduced by Prof. Stokes. The symbol
R.D. IL b
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vi PREFACE.

a/b for % is very convenient as it enables the algebraical formula

to be written on a line with the type. If some such abbreviation
as this is not used two whole lines are required to write the
simplest fraction. When the numerator or denominator of the
fraction so written contains several factors, the rule adopted has
been that all that follows the slant line up to the next plus or
minus sign is to be regarded as the denominator. In the same
way all that precedes the slant line up to the next plus or minus
sign is to be taken as the numerator. When more complicated
factors have to be written, bra.ckets are used to indicate the
o + —tf would be written
abjed + (e + f)/(g— h).

Numerous examples have been given throughout the book.
Some of these are intended to be merely simple exercises, but
many are important as illustrating and completing the theories
given in the text. Sometimes when the principles of a theory
bad been explained numerous applications seemed to arise. In-
stead of loading the text with these it appeared preferable to
put them into the form of examples and to give such hints as
would make their solution easy, Everywhere the results have
been given, and care has been taken to secure their accuracy;
but amongst so many problems, it cannot be expected that no
errors have escaped detection.

numerator and denominator. Thus

EDWARD J. ROUTH.

PETERHOUSE,
August, 1884.
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DYNAMICS.

CHAPTER I

MOVING AXES AND RELATIVE MOTION.

Moving Aazes.

1. IN many problems in dynamics it will be found that the
axes of reference suitable to the initial state of the motion are not
well adapted to follow the body under consideration during its
whole course of motion. It is therefore sometimes convenient to
use axes which themselves move in space so that they always keep
those positions which are most appropriate to the instantaneous
position of the body. Thus to take a simple case; in dynamics of
a particle we sometimes resolve our forces along the tangent and
normal to the path. This is practically the same as usin% a set of
Cartesian axes which move so as to be always parallel to the
tangent and normal. This theory has been generalised in Vol. I.
chap. 1v. where the motion is referred to any two lines whatever
which move in one plane. 'We now propose to extend the theory
still further. We shall discuss the general equations of motion of
first a particle and then a rigid body referred to any rectangular
axes which move as we may find convenient.

2. If we make the axes to which we refer the body move, it
is clear that we must have some means of determinin% the posi-
tion and motion of these axes in space. This might be effected
by having another set of axes which are themselves fixed in space
and to which in turn we might refer the moving axes, This is the
course adopted by Euler; thus in the equations usually called
after his name (Vol. 1. Chap. v.) he uses two sets of axes. The
advantage of giving motion to the axes is however greatly
diminished if we must use a set of fixed axes as well through-
out the motion. For this reason we shall now determine the
motion of the moving axes by angular velocities 6,, 6,, 6, about
themselves, In other words, we regard the axes as if they were
a material system of three straight lines at right angles whose
motion at any instant is given by three coexistent angular veloci-

/? R. D, IL, 1



2 MOVING -AXES.

ties about axes which instantaneously coincide with them. In
this way we do not use any fixed axes except at the beginning or
end of the solution and only in such a manner as we may find
convenient.

3. In order to understand how the motion of a body is re-
ferred to moving axes let us first suppose that the body is turning
about a fixed pomnt. Taking this point as origin we determine the
motion of the body by three an um velocities »,, ,, w, about the
axes in the same manner as if the axes were fixed in space. The
position of the body at the time ¢+ df may be constructed from
that at the time ¢ by turning the body through the angles w,dt,
w,dt, o dt successively round the instantaneous positions of the
axes. But it must be remembered that odt does not now give
the angle the body has been turned through relatively to the
plane zz, but relatively to some. plane fixed in space passing
through the instantaneous position of the axis of z. The angle
turne§ through relatively to the plane of 2z is (@, — 6,) dt.

If there be no fixed point we follow the construction explained
in Vol. 1. Chap. v. We represent the motion of the body by the
six components u, v, w; ,, w,, o, referred to any origin, the
axes being treated as if they were fixed for the moment. Here
u, v, w are the resolved parts in the directions of the axes of the
velocity of the origin or base point, and w,, w,, , are the resolved
parts about the same axes of the angular velocity of the body. In
the same way the motion of the axes is given by the components
of motion p, ¢, r; 6,, 6,, 6,, the moving axes being themselves the
.instantaneous axes of reference.

In most cases however the axes will be made to turn round
some point which is either fixed or which may be treated as fixed.
Their directions in space are made to vary in a manner suitable to
the purpose we have in hand. We then have p, ¢, » all zero.
Since any point may be reduced to rest by the method explained
in Vol. 1. Chap. 1v. this supposition, which will be generally made,
does not really limit our choice of axes.

4. Velocities referred to Moving Axes. The position of a
point P being defined by the co-ordinates x,y, z referred to rect-
angular azes which turn round a fixed pownt O, it is required to
find the velocities resolved parallel to the instantaneous positions of
the moving axes.

The resolved velocities in space are not given by dz/dt, dy/dt,
dz/dt. These are the resolved velocities of the point relatively to
the moving axes. To find the motion in space we must add to
these the resolved velocities due to the motion of the axes. If we
supposed the particle to be rigidly connected with the axes its
velocities would be expressed by the forms 6,z — 6,y, &c. given in
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Vol. 1. Chap. v. Adding these together the actual resolved veloci-
ties of the particle are

u= %—y8,+ 20,

v= %’—2& + z6,,

dz
de
If the origin O be itself in motion with the resolved velocities

P, ¢, v we must add these also to the right-hand sides of the
equations to obtain the actual resolved velocities of P in space.

fw0,+y0,. .

5. Accelerations referred to Moving Axes. 7he instan-
taneous velocities of a point P in space being u, v, w when resolved
parallel to the instantaneous positions of the axes it is required to
Jind the accelerations parallel to these axes.

. At the time ¢, let Ox, Oy, Oz be drawn from any point O
parallel to the instantaneous directions of the axes. At this instant
u, v, w are the resolved velocities in these directions. At the time
t +dt the axes by their translations and rotations will have changed
their positions in space. Let Ox', Oy’, 0z’ be drawn from the same
point O parallel to these new directions. At this instant,

du dv dw
“+'ﬂdt, v+d—tdt, w+7“ dt

will be the resolved velocities in these directions.

Describe a syhere of unit radius whose centre is at the fixed
origin and let all these axes cut the sphere in the points , g, z,
z, ‘i:/’, 2’ respectively. Thus we have two spherical triangles axyz
and 2y’Z, all whose sides are right angles. The resolved part of
the velocity of the particle at the time ¢+ d¢ along the axis of z is
du , dy , dw ) ,
(u+§dt) coszm+(v+a dt) Co8 2y +(w+m dt ) cos 27/,
By the rotation round Oy, « has receded from z by the arc 8,dt,
and by the rotation round Ow, 3’ has approached z by the arc 6,dt.
Therefore 22’ = zx + O, dt,
: 2y =zy —0,dt.
Also the cosine of the arc zz' differs from unity by the squares
of small quantities. Substituting these we find that the compo-
nent velocity of the particle at the time ¢ + d¢ parallel to the axis
of z is ultimately w +.%:3 dt — u0,dt + v0,dt.
But the acceleration is by definition, the ratio of the velocity
gained in any time df to that time. Hence if Z be the acceleration

1—2



4 MOVING AXES.
resolved patallel to the axis of 2, we have

. Z= “%0 —ub, + v0,.
Similarly if X and ¥ be the accelerations parallel to the axes
of z and y, we have

du
X=E—00,+w0,,
Y=2_wh, +u8,

6. Ex. 1. Let the motion be referred to obliqgue moving axes so that the
sides of the spherical triangle zyz are a, b, ¢ and the angles 4, B, C. Let the equal
quantities gin a gind gin C, sind sinc sin 4, ginc sina sin B be called x  Prove
that if the velocity be represented by the three components u, v, w parallel to these
axes, then the resultant acceleration parallel to the axis of z is

dw du

dv
Z=Tf¢ + 4 cosb+‘—l-‘ ©08 @& — U0+ v,

with similar expressions for X and Y.

This may be done by the use of the spherical triangles zyz, z'y’s’, by first proving
that z2’=" + 0,dt sin csin 4, zy’=a — 6,dt sin ¢ &in B, and then substituting as before.

Ex. 2. Prove in the same way that if z, y, z be the co-ordinates referred to
oblique axes moving about a fixed origin, and v/, ¢/, w’ the resultant velocities
parallel to the axes, d=g+%mb+%ma-dy‘+y0ya,
with similar expressions for «’ and v’.

Ex. 8. Prove also that the equations connecting the components u, v, w with
the co-ordinates z, y, 2 referred to axes with a fixed origin are

dz sine

w=—+4 | —— -cotB -—cotd
dt ”
0y 0, 0,
z F y

with two similar expressions for u and v. .

Bince v’ is the component parallel to z of (u, v, w,) we have ucosb+vcosa + w=w’,
with similar expressions for v’ and v’. By solving these we get the required values
of u, v, w.

Ex. 4. If the whole acceleration be represented by the three components
X, ¥, Z parallel to the axes, prove that the expressions for these in terms of uwvw,
may be obtained from those given in the last example by changing z, y, z into u, v, w
and 4, v, winto X, ¥, Z,

7. Geometry of Moving Axes. In order to use moving
axes it is necessary to be able to express with respect to these
axes any conditions which may exist with regard to straight lines
or points which move independently in space. We have therefore
placed together in the following articles a few of the more im-
portant conditions.

— . A — . S . m— —




GEOMETRY OF MOVING AXES, 5

8. To express the geometrical conditions that a point whose
co-ordinates are (%, y, z) 18 fized in space. '

This may be” done by equating to zero the resolved velocities
of the point as given in Art. 4. We thus obtain the conditions

p+ %_.’/0: +26,=0,
with two similar equations,

9. To express the geometrical conditions that a straight line
whose direction cosines are (1, m, n) moves parallel to itself in space
or that its direction 13 fized in space. .

Let a straight line OL of unit length be drawn from any point
O fixed in space parallel to the given straight line. The co-
ordinates of l{: referred to axes which turn round O as an origin
50 as to be always parallel to the moving axes will be I, m, n.
Since OL is fixed in space, the resolved velocities of L are zero.
The required geometrical conditions are therefore

dl

d—t—m0,+n0,=0,

with two similar conditions,

It is sometimes necessary to express the direction of the straight line by the
Eulerian angles 6, ¢, y as explained in Vol. I. chap. v. The moving axes are there
called 04, OB, OC, and the straight line whose direction is to be fixed in space i8
represented by 0Z. We see that the equations just written down are equivalent to
those usually called Euler’s geometrical equations, but expressed in a aymmet_riui
form, Sl :

10. We may use the proposition of Art. 9 to find the path in space of the
origin of the moving axes, as well as the directions .of the axes themselves, The
components of motion 6,, 6,, 0, being given functions of the time, we have three
equations to find J, m, n. These may be regarded as the direction cosines of any
one of three axes of reference £, #, ¢ fixed in space, The integration of these
equations will involve three arbitrary constants. One of these is determined by
the condition +m3+n3=1. The other two will depend on the initial position of
the moving axes relative to the particular axis §, 9 or ¢ we are considering.

The velocity of the origin of the moving axes parallel to this straight line is
equal to Ip +mq +nr (Art. 3). The velocities d¢/dt, dn/dt, d/dt being thus found,
we determine £, 5, { as functions of the time by integration.

. Ex. If the components 6,, 0;, 6, be all constant, prove !, m, n are given
by three expressions of the form
=G0, + AQ sin Qt - (Bo, — C6,) cos Ot
where 02=0,%+ 0,2+ 0,2 and 46, + B0, + C0,=0. The three arbitrary constants are
therefore 4, B and G. Thence find the path in space of the origin of the moving
axes,

11. If the direction cosines of a straight line connected with the moving azes be
(L, m, n), find the angle between two positions in space at an interval of time dt.

Drawing a unit length OL as before parallel to the position of the straight line
at the time ¢, the resolved velocities of L will be di/dt - mfs+nd,, &o. If OL be the’
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parallel at the time t+dt and 31, 3m, 3n the projections of the length LL on the
moving axes, we have therefore
31 =dl—-mbydt +nbyde, -
Sm=dm — n6,dt + 10,dt,
on =dn - 10,dt + mo,dt.

Since OL and OL’ are each of unit length the required angle LOL'=3y is given
by (8x)*=(31)* + (3m)* + (3m)2.

Cor. The direction cosines of the plane LOL' are obviously proportional to
mdn —ndm, ndl-1lon, 1om - mal.

Ex. The six components of the motion of the azes (Art. 8) are given
functions of the time, find the radii of curvature and torsion of the path described
by the origin., - -

The direction cosinés of the tangent are proportional to p, g, 7. Hence by this
proposition the angle of contingence is known. By the corollary the direction
cosines of the osculating plane, and therefore those of the binomial are known. By
substitating for I, m, n in the proposition the direction cosines of the binormal,
the angle of torsion can be found.

12. Sometimes, while using moving axes, we require to refer
the motion of some straight line OM connected with the moving
axes to an axis of reference fixed in space. The object of the
following example is to show how this may be done.

Ex. Let the direction cosines of a straight line OM fixed relatively to the
moving axes be (A, p, ») and let it be required to refer the motion of OM to some
straight line OL fixed in space whose direction cosines at the time ¢ are (I, m, n).
Let the angle LOM be 6 and let  be the angle the plane LOM makes with any
fixed plane in space passing through OL. Then show that

€08 0 =I\+mu+ny, -
sin%0 %:01(l—Maos0)+0,(m—;zcos0)+0,(n—vc090) )

If 6, 0, be the resolved parts of the angular velocities about OL, OM respec-

tively, the last equation may be written in the form

. g 0
29°¥ —g,-
8in? 6 -+ =0, 0. cos 6.

If the straight line OM be not fixed relatively to the axes, then (A, u, ») will be
variable and we must add to the right-hand side of the second equation the deter-

minant ()‘%’—:—p‘;—t n+ (ﬂ%—v%)l+ v%—)\%)m.

In this determinant we may replace A, u, » by any quantities \«, ux, ¥« propor-
tional to them (whether x be variable or not) provided we divide the determinant
by «2. . -

The mode of proof may be indicated as follows. Let P be a point in OM at a
distance unity from O and let P move about with OM. The moment of its velocity
about OL is 8in% dy/dt. Butif (v, y, 2) be the co-ordinates of P, its velocities paral-
lel to the axes are given by Art. 4, and the moments of these velocities about the
axes will be L=yw ~2v, M=2u—zw, N=av-yu. Hence the moment about OL
will be 8in% dy/dt =Ll+Mm+Nn. If we effect these substitutions and (since OP
is unity) replneg z, 9, 2 by A\, i, », we get the results in the example.
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18, It is not our object here to show the utility of moving axes in Bolid
Geonietry further than to prove those theorems which are required in Dynamics.
It will be found however that both curves and surfaces are sometimes most easily
treated by referring them to a set of moving axes in which the origin travels
along the curve or surface and the directions of the axes are such tangents and
normals as may be suitable to the property under discussion. We may refer the
reader to’a paper by the author in the Cambridge Mathematical Journal (Vol. vi.
1866) where the application of moving axes to the curvature of curves is illustrated
by several examples. The two following examples though of no immediate im-
portance will be found useful further on.

Ex. 1. The principal axes at any point P of a curve are the radius of curvature,
the tangent and binormal. If these be taken as the axes of z, y, £, prove that the
components of motion by which the axes are screwed along the curve through an
arc dy are p=0, g=dy, r=0; 6,=0, 0,=- dr, 03=— de where dr and de are the
angles of torsion and contingence.

Ex. 2. The principal axes at any point O of a surface are the tangents to the
lines of curvature and the normal to the surface, Let these be called the axes of
z, y, z. Let it be required to move the axes from O into the position of the
principal axes at a neighbouring point O’ on the axis of z. If 00'=dz the six
components of motion for the base point O are given by

p=dz, ¢=0, r=0; 6,=0 0=—d—z 1~--—]—')0 =i (:—l)da!
4] ) , 1 ' Ve P ’ P P’ 8 dy 1]
where p, p' are the principal radii of curvature for the sections zz, yz respectively.
By combining this with a corresponding motion along the axis of y, we can move
the axes from O into the positions of the principal axes at any neighbouring
point O’ on the surface.

14. Application of Moving Axes to Dynamics. 7o
explain a method of changing from fized to moving axes.

If a body be moving about a fixed point and we have esta-
blished any general proposition referring its motion to fixed axes
meeting at the fixed point, then we may use the following method
to infer the corresponding proposition referring the motion to axes
moving in any proposed manner about the origin. Suppose the
general equation established to be

Y {w,, do,/dt, &c....} =0,
where ®,, »,, o, are the angular velocities about the fixed axes.
Let w,, »,, w, be the angular velocities of the body about the
moving axes and let the motion of the axes be defined as before
by the angular velocities 6,, 6,, 8, about themselves.

The fixed axes being arbitrary in position, let them be so
chosen that, at the moment under consideration, the three moving
axes are passing through them, so that the two sets are for an
instant coincident. Then we may write 0, =w0,, o,=0,, 0,= o,,
but we cannot assert do,/dt =dw,/dt, for the moving axes at the
time ¢+ df are not coincident with the fixed axes.

To determine the relation between dw,/dt and dw,/dt we may
proceed thus. Let OL be any straight line fized vn space making
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with the moving axes the angles a, 8,9. Let @ be the angular
velocity of the body about this straight line, then

Q) = w, cos 2 + o, cos B + w, cos v,

aQ _d d d
m=_¢;’tl cosa+7a;3cosﬁ+?%cosy
—G’.Sinz%—w,ﬁnﬁ(z—f—m,sinry%.

Since OL is any fixed line in space, let it be 8o chosen that the
moving axis of z coincides with 1t at the time ¢. Then a=4m,
B =}, and =0, also dQ/dt will be dw,/dt. Since a is the angle
OL makes with the moving axis of z, dz/dt is the rate at which the
axis of z is separating from a fixed straight line coincident with the
axis of z and this 18 clearly 6,. Similarly dB/dt=—0,, hence

do, _dw

-Eatl = E’ -0b,+ 00,
Similarly  e_dm_ g 109,

do, _do

Tit—" = —d—ti -w,0,+ w0,

Hence we obtain the following rule. If we substitute in the
given general equation =0, for o,, »,, , the values o, o,, o,
and for dw,/dt, dw,/dt, dw,/dt the equivalents written above we
shall have the corresponding equation referred to moving axes.

If the moving axes be fized in the body, and move with it, we
have §,=w,, 6,=0,, 0,=w, In this case the relations will
become do,/dt = do,|dt, do,[dt = do [dt, do,/dt=dw,/dt, as in
Euler’s equation, Vol, 1, Chap. v,

The preceding proof of the relation between dw,/dt and dw,/dt is
a simple corollary from the parallelogram of angular velocities. The
result will therefore be true for any other magnitude which obeys
the “ parallelogram law.” In fact the demonstration is exactly the
same. Now linear velocities and linear accelerations do obey this
law. Hence the expressions obtained in Arts. 4 and 5, for the
velocities (u, v, w) and the accelerations (X, ¥, Z) may be deduced
from the one proved above.

If the general equation +»=0 should contain the velocity or
acceleration of any particle of the body, then to obtain the corre-
sponding equation referred to moving axes, we must substitute for
th:else velocities or accelerations the expressions found in Arts, 4
and 5.

15. If the general equation should contain d%w,/dt? or any other second dif-
ferential coefficients, the expressions to be substituted for them become more
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complicated. Since dw./dt, dw,/dt, dw,/dt, are angular accelerations, they follow
the parallelogram law. We have therefore
an dw, dwy dwg P
a=\@ - Web3+ w40, ) cos a + a——uaol+a'103 cos 8+ T 3+ Wb, ) cos .
‘We may repeat the same reasoning and we shall finally obtain

a? d (d di . d

Ti‘t:;'=ﬁ "%!_“’102"' “2012 — 6y z—d";—‘—w,o,+w,0,2 +6, 3%"‘"’3’1"’“1032 .

So we may proceed to treat third and higher differential coefficients.

16. Expressions for the moments of the Effective
Forces. A body is turning about a fixed point in any manner,
to determine the moments of the effective forces about any axes
which meet at the fixed point.

Let @, y, 2z be the co-ordinates of any particle m of the body
referred to axes fixed in space and meeting at the fixed point.
Let h,, h,, h, be the angular momenta about the axes. Then if
®,, ®,, ®, be the angular velocities about these axes and 4, F &c.
the moments and products of inertia, we have

h,= Ao, — Fw,— Eo,
with similar expressions for h, and h,. The moments of the effec-

tive forces about these fixed axes will then be dh_/d¢t, dh,/dt, dh,/dt.
See Vol. 1. Chap. 11.

Let h,, h,, h, be the angular momenta about a set of moving
axes having the same origin; e,, ®,, o, the angular velocities of
the body, 4, F &c. the moments and products of inertia about
these moving axes. Let the motion of the moving axes be given
by the angular velocities 6,, 6,, §,. Then since moments or
couples follow the parallelogram law, we see by the general pro-
position of Art. 14 that the angular momentum about the moving
axis is obtained by writing o,, ,, o, for ,, »,, »,, We thus have

h,= Ao, — Fo,—~ Ew,,
with similar expressions for h, and h,. By the same proposition
the moments of the effective forces will be
dh,

dt - hsga + hsea’
dh,

}ﬁz - ’2’9! + hxea’
dh,.

G-+ hY,

17. If the moving axes be fized in the body we have 6, = w,,
0.=o, and 6,=w,. If also the axes be principal axes we have
h,= Ao, h,= Bw,, h, = Cw,. The moments of the.effective forces
about the axes then become '

dh d
Et-‘=A d—ﬁ;‘—(B—C')m,m,,
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with similar expressions for 4, and h,. These of course are the
Eulerian forms given in Vol. 1. Chap. v.

18. If it be required to find the moment about the axis of z
of the effective forces for a rigid body moving in any manner in
space, we use the princigle proved in Chap. 11. of Vol. . The
moment about any straight line is equal to the moment about a
parallel straight line through the centre of gravity plus the
moment for the whole mass collected into its centre of gravity.

In the case of a system of rigid bodies, the moment of their
effective forces may be found by adding up the separate moments
of the several bodies.

19. Geeneral equations of motion. 70 obtain the general
equations of motion of a system of moving bodies referred to any
rectangular axes moving about a fized origin.

These equations of motion may be found by equating the
expressions just found for the resolved parts and moments of the
: ective forces to the corresponding expressions for the impressed
orces,

Thus consider any one body of the system. Let X, Y, Z be
the resolved parts of all the impressed forces on that body, including
the unknown reactions of the other bodies of the system. Let
L, M, N be the moments of these impressed forces about the axes
of reference. Let m be the mass of the body. Let u, v, w be the
resolved velocities in space of the centre of gravity of the body,
then u, v, w are known in terms of the co-ordinates of the centre
of gravity by the equations of Art. 4. The equations of motion
of the centre of gravity are

du . X
m—v0,+w0,=ﬁ,
with corresponding expressions for ¥ and Z.

" Let h,, h,, h, be the angular momenta of the body about the
instantaneous positions of the axes of reference, then h , h,, h, are
known in terms of o,, ®,, w, the angular velocities of the body
by the expression found in Vol. L. Chap. V. The equations of
motion will then be

dh <

v i h6, +hf,=L,
with similar expressions for M and N*.

* These ‘equations were given in this form by the late Professor Slesser
(Cambridge Quarterly Journal, Vol, 11.), to whom the results of the two following
special cases had been previously shown by the author. It appears however that
similar results had been previously published in Liouville’s Journal in 18 The
reader should also consult & paper in Vol. x. of the Cambridge Transactions, 1856,
by R. Hayward.

%)%Wﬁmwﬁ ;euuw‘w
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Besides these dynamical equations there will be the geometrical
equations which express the connections of the system. As every
such forced connection is accompanied by some reaction, the number
of geometrical equations will be the same as the number of un-
known reactions.

Thus we have sufficient equations to determine the motion.

20. ‘T'wo important special cases. There are two cases
in which the equations of motion just found admit of great sim-
plification. As these often occur it is worth while to discuss them
separately.

In the first case we suppose the body to be turning round some
point O fixed in space and to be such that two of the principal
moments of inertia at the fized point are equal.

Let OC be the axis of unequal moment of inertia and let us
take this as the axis of Z. Let us choose as the other axes. of
reference two other axes 04, OB which turn round OC in any
manner we please. To fix this let oy be the angle the plane COA
makes with some plane fixed in theyi)ody and passing through OC.
Then we have §, =w,, 6, =0, and 6, = 0,4+ dy/dt. Also b, = Aw,

h,= Bw,, h,= Ca,. the equations of motion are now
d d
A (d—at" -, E)tc) —(4-0)ow,=L
d d
4(Gp+o, %)+ (4~ C)ww,=H
¢ %, -N

In this case the most convenient geometrical equations to express
the relations of these moving axes to axes fixed in space are those
usually called Euler’s geometrical equations. They are given in
Chap. V. of Vol. 1. where 6,, 6,, 6, must of course be written for
@,, 0, &,

21. Since dy/dt is arbitrary it may be chosen to simplify either
(L) the dynamical equations or (IL) the geometrical equations.

I. We may put dy/dt = —w», The dynamical equations then
become . L
do

A—(F‘-l- Cow,=L
d
A—‘%’— Cow,=M ¢ -

% =V
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II. We may so choose dy/d¢ that ¢ =0. In this case the plane
COA always passes through a straight line OZ fixed in space.
Euler’s geometrical equations then become

g dy . 5 dy d{ _
| G0 g sinf=—-w,, ~d " dt €08 6 = w,.

22. Second special case. In the second special case we
suppose as before that the body is turning about a fixed point, but
that all the moments of inertia at the fixed point are equal. "In this
case there are three sets of axes which may be chosen with
advantage.

Firstly. 'We may choose axes fixed in space. - Since every axis
is a principal axis in the body, the general equations of motion

become
do, L do, M do, N
dt A’ dt A’ dt A
Secondly. We may choose one axis as that of OC fixed in

space and let the other two move round it in any manner, then as
in the first special case, the equations of motion become

do, _ dx_L]
dt a4
do, dx_M|
@ TG =4
daw, _N
dt T4

Thirdly. We can take as axes any three straight lines at right
angles moving in space in any proposed manner. The equations
of motion may be deduced from the first set just written down by
the help of the general rule for changing from fixed to moving
axes, We have therefore

d L
-th‘— o0, + w,0,=z R
do M
Tt’ —(1)30‘+ 0‘0,=z ,.
do, N

7; -00,+0,0, =7
The geometrical equations will then be the same as those
given in Art. 9.

28. Ex. An ellipsoid, whose centre O is fired, contracts by cooling and being
8et in motion in any manner is under the action of no forces. Find the motion,

The principal diameters are principal axes at O throughout the motion. Let us
take them as axes of reference. The expressions for the angular moments about
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the axes are hy=Aw,, hy=Buw,, hy=Cuw,. The equations of Art. 19 then become

2 (40;) — (B C)uy=0

2 (Bun) - (C- A)u =0

3 (Cun) ~ (4~ Bluyoy=0

Multiplying these equations by 4w, Bw;, Cw,, adding and integrating we see
that A% *+ B%w?+ Cwy? is constant throughout the motion. To obtain another
integral, let A=4,f(t), B=B,f(t), C=C,f(t) where f(t) expresses the law of cool-
ing which has been supposed such that the body changes its form very slowly. Let
@, f (1) =0, wf (t)=0j, wyf(t)=10;, and put dt/dt’=f (t), then the equations become

4053 - (8o~ C) 00,=0,

and two similar equations, These may be treated as in the chapter on the motion
of a body under no forces. Liouville’s Journal,

- On relative motion.

- 24, Clairaut’s Theorem®. The theory of relative motion is
best understood by viewing it in as many aspects as possible. We
shall therefore now consider a method of determining the motion
which is more elementary and does not in the result make an
exclusive use of Cartesian co-ordinates.

Let it be required to refer .the motion of a particle P to any
given set of moving axes. Let P, be the position of P at any
time ¢ and let P, be attached to the axes and move with them
during any short interval. Let f represent the acceleration of P,
in direction and magnitude at the time . The particle P will of
course separate from P,, but as is explained in Dynamics of a
Particle the actual acceleration of P in space is the resultant of
its acceleration relative to P, treated as a fixed point and the
acceleration f of P,. The acceleration of P, is called the “ accele-
ration of the moving space.”

- . Let xyz be the co-ordinates of the particle P referred to the
moving axes and let X, ¥, Z be the impressed forces on the
particle resolved parallel to the axes. If we eliminate u, v, w
from the equations of Art. 4 and Art. 5 we have

X dz dy dz

* This method of determining the relative motion of a particle was first given
by Clairaut in 1742, and afterwards the same rule was demonstrated in a different
manner by Coriolis. The arguments of the former were criticized and improved by
M. Bertrand in the nineteenth volume of the Journal Polytechnique. The mode of
proof of the latter is altogether independent of all co-ordinates. Another demon-
stration by the use of polar co-ordinates is given in Vol. xit. of the Quarterly
Journal of Mathematics by the Rev, H, W. Watson, :
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with similar expressions for ¥ and Z. Here A, B, C, D are func-
tions of 0,, 6,, 6, p, ¢, r and their differential coefficients with
regard to ¢ which it is unnecessary to write down. If z, y, £ were
constants all the terms of X would disappear except the four last.
These then with the corresponding terms in ¥ and Z express the
acceleration f of a point P, rigidly attached to the axes but
occupying the instantaneous position of P,

We have now to examine the effect of the remaining terms.
The motion of the axes of reference during any interval dt may
be constructed by a screw motion along and round some central
axis OI. Let Udt be the translation along and d¢ the rotation
round OL Let V represeut the velocity of P relative to these
axes, and let @ be the angle the direction of ¥V makes with OI.
Consider now the second and third terms of X taken together,
and the corresponding terms of Y and Z neglecting for the
moment all the other terms. If we multiply the expressions for
X, Y, Z by 6,, 6,, 6, respectively the sum of these terms is zero.
The resultant of these accelerations is therefore perpendicular to
(1) in, if we multiply the expressions for X, {{eZ by dz/dt,
dy/dt, dz/dt respectively the sum of these terms is agam zero.
The resultant of these accelerations is therefore perpendicular to
the direction of the relative velocity V. Finally by adding up
the squares of these terms we find that the magnitude of the
resultant acceleration is 2Q ¥ sin 6. »

To determine the manner in which these forces should be
applied, we must transpose the terms which represent them to the
other sides of the equations. The first equation will then become

d'z dy dz
mos =X+ 2m (m 62 o,) ~m (Az + By + Cz + D),

and the other two will take similar forms. These are the equa-
tions of motion of a particle referred to fixed axes, moving under
the same impressed forces as before, but with two additional forces.
These are, first, a force equal and opposite to that represented by
mf, where f is the acceleration of the point of moving space occu-
pied by the particle; and secondly, a force whose magnitude has
been shown to be 2mV2sin §. To determine the direction of this
force, let the axis of z be taken along the axis OI, and let the
plane of yz be parallel to the direction of motion of the particle,
then 6,=0, 6,=0 and dz/dt=0. We then easily see that this
force disappears from the equations giving md'y/dt’ and md*z/dt* ;
while in that giving md'z/dt", we have the single term 2mé,dy/d:.
The magnitude of this force is obviously 2m V{2 sin 6, and it acts
along the positive direction of the axis of x. This is the left-
handos}de when the receding particle is viewed from the central
axis
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When these equations have been integrated, the arbitrary con-
stants are to be determined from the initial values of =, ¥, 7,
dr/dt, dy/dt, dz/dt. These differential coefficients are clearly the
components of the initial velocity of the particle, taken relatively
to. the moving axes.

25. Relative Motion of a particle. We may express these
conclusions in the following rule.

In finding the motion of a particle of mass m with reference
to any moving axes we may treat the axes as if they were fixed
in space, provided we regard the particle as acted on, in addition to
the impressed forces, by two other forces :

(1) a force equal and opposite to mf where f represents in
direction and magnitude the acceleration of the point of moving
space occupied by the particle. The force mf is called the “force
of moving space;”

(2) a force perpendicular to both the direction of relative
motion of the particle and to the central axis or axis of rotation
of the moving axes and which is measured by 2m V(Q sin § where
V is the relative velocity of the particle, & the resultant angular
velocity of the moving axes and 6 is the angle between the
direction of the velocity and the central axis. This force is called
the compound centrifugal force.

To find the direction in which this force is to be applied; stand
with the back along the central axis so that the rotation appears
to be in the direction of the hands of a watch; then viewing
the particle receding from the central axis the force acts to the

left-hand. This central axis may be conveniently called the axis
of the centrifugal forces.

26. Ex. If the particle be constrained to move along a curve which is itself
moving in any manner, the compound centrifugal force, being perpendicular to the
direction of the relative velocity of the particle, may be included in the reaction of
the curve. The only force which it is necessary to impress on the particle is the
force of the moving space. If the curve be turning about a fixed axis with an
angular velocity 2, the components of the accelerating force of moving space are
clearly Q3 tending directly from the axis of rotation, and rd2/dt perpendicular
to the plane containing the particle and the axis, where r is the distance of the
particle from the axis. This agrees with the result obtained in the section on
relative motion in Vol. 1. Chap. 1v,

27. In finding the compound centrifugal force it will be
useful to remember, that we may resolve the angular velocity
or the linear velocity ¥ in any manner that we please, and find
the forces due to each of the components separately. Though we
have thus more than two forces which must be applied to the
particle, yet, by making a proper resolution, some of these may
produce either no effect, and may therefore be omitted, or may
produce an effect which it may be easy to take account of.
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28. Relative Motion of a Rigid body. When we wish to
apply Clairaut’s theorem to the motion of a rigid body, we must
consider each particle to be acted on by the two forces which
depend on the position and velocity of that particle. To find the
resultant of all these forces, we shall generally have to effect an
integration throughout the body. This integration though not
difficult will sometimes be troublesome. To avoid this we may
use the two following methods.

In the first place we notice that the forces of moving space
for any body are the same as the effective forces of an imaginary
body occupying the instantaneous position of the real body and
moving with the space instantaneously occupied by it. The
resultant of these forces may therefore be obtained by the usual
rules given to find the resultant of the effective forces of a real
body. These have been already sufficiently explained in Vol. L.

In the second place we notice that the components of the
compound centrifugal forces on anzrﬁanicle are by Art. 24 algebraic
functions of dz/dt, dggdt, dz/dt. ese functions are of that kind
described in Vol. 1. Chap. 1. and represented in Art. 14 of that
chapter by the symbol B We may therefore use the following
theorem. If M be the mass of the body, V the velocity of its
centre of gravity, { the angular velocity of the moving space, 6
the angle between the direction of ¥ and the axis of {2, then the
compound centrifugal forces of all the particles of the body are
equivalent to a force 2/ V(2 sin 6 acting at the centre of gravity
perpendicular both to its direction of motion and the axis of Q,
together with the compound centrifugal forces of the body after the
centre of gravity has been reduced to rest. .

To find these latter forces, let us refer the body to the prin-
cipal axes at the centre of gravity as axes of co-ordinates. Let
o,, o, o, be the resolved angular velocities of the body, £,, Q2,, 2
the resolved parts of {2 about these axes; A, B, C the principai
moments of inertia at the centre of gravity. Then, by Art. 24,

the compound centrifugal forces on any particle of the body whose

co-ordinates are (x, ¥, z) and mass m, are

_ dy dz
X—m{2w Q,- 2%“’}’
with similar expressions for Y and Z. The centre of gravity being
at the origin, the resultmlllz:lforces of these are easily seen by inte-
gration to be all zero, while the resultant couples about the axes
are
L=0Q,(A+B-0)-0.,(4+C-B)-200,(B-0),

with similar expressions for M and N,

29, Ex.1. A disc of mass M is constrained to move in & plane under any
forces while the plane turns about a straight line parallel to the plane and distant
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a from it with angular velocity 3. Show that in finding the motion of the disc, we
may regard the plane as fixed, provided we impress on .the disc in addition to the
given forces, (1) & force MQ? — Ma dQ/dt acting through the centre of gravity tending
directly from the projection of the axis of rotation on the plane, where » is the
distance of the centre of gravity from the projection, (2) a couple FQ? where F is
the product of inertia about two rectangular axes in the plane intersecting at the
centre of gravity, and respectively parallel to the axis and perpendicular to it.
The constants of integration are to be determined from the initial conditions taken
relatively to the moving plane.

Ex. 2. A disc of mass M is constrained to move in a plane under any forces
while the plane turns with angular velocity © about a straight line perpendicular to
its plane and cutting the plane in the point 0. BShow that we may regard the plane
as fixed provided we impress on the disc (1) a force MQ%r acting at the centre of
gravity and tending directly from the axis, where r is the distance of the centre of
gravity from the axis, (2) a force MrdQ/dt acting at the centre of gravity perpen-
dicular to r in the direction opposite to the rotation, (3) a couple Mk? dQ/dt, where
M k? is the moment of inertia of the disc about an axis through its centre of gravity
perpendicular to its plane, (4) a force 2MVQ acting at the centre of gravity perpen-
dicular to its direction of motion, where ¥ is the velocity of the centre of gravity.

Ex. 8. A sphere of mass M moves in space, show that the compound centri- -
fugal forces of all its elements are equal to (1) a resultant force 2MVQsin ¢ acting
at the centre of gravity, where V is the velocity of the centre of gravity and Q2 the
angular velocity of the moving space and 6 the angle the direction of ¥V makes with
the axis of 2, (2) a couple Mi*w sin ¢, where w is the angular velocity of the
sphere, ¢ the angle its instantaneous axis makes with the axis of @, and the plane
of the couple is parallel to the axes of O and w.

30. Principle of Vis Viva applied to moving axes. Suppose the system at
any instant to become fized to the set of moving azes relative to which the motion is
required, and calculate what would then be the effective forces on the system. These
have been called in Art. 25 the forces of moving space. If we apply these as ad-
ditional impressed forces on the system, but reversed in direction, we may wuse the
equation of Vis Viva to determine the relative motion as if the axes were fized in
space. This theorem is due to Coriolis, Journal Polytech. 1831.

If we follow the notation of Art. 24 the accelerations of any point P resolved
parallel to the rectangular moving axes are

“i;; 2dy0,+2 0,+Az+By+Cz+D
with two similar expressions for the axes of y and z. The last four terms, mth the
corresponding terms in the other expressions, are the resolved accelerations of
a point P, rigidly attached to the axes, but occupying the instantaneous position of
P. Let us call these X, Y,, Z,.

Let us now recur to the proof of the principle of Vis Viva given in Vol. 1.
Chap. vir. To adapt that proof to our present case we have merely to substitute
these expressions for d?z/dt?, &c. in the general equation of virtual moments.
After substitution for the displacements 8z, 8y, 8z it is clear that the terms con-
taining dz/dt, dy/dt, dz|dt all disappear. The equation afier integration then
becomes

Zm{ ‘;:) + %)ﬂ(‘;i)} 23m{(X - X) dz +(¥ - Yo)dy +(Z - Zo)dz}+C
R.D.IL 2
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81. This theorem of Coriolis also follows at once from that given in Art. 25 for
all kinds of relative motion. The mode of proof just given has the advantage of
recurring to first principles.

It is clear that when we use the principle of virtual velocities any force whose
line of action is perpendicular to the displacement given to its point of application
must disappear from the equation. Now in the principle of Vis Viva the displace-
ment given to every point is the elementary arc described by that point in the time
dt relative to the axes. The compound centrifugal force acts perpendicularly to
this arc, and therefore will disappear from the equation. But the virtual moments of
the forces of moving space will not be zero, and must be allowed for in the equation.

82. Ex. A sphere rolls on a perfectly rough plane, which turns with a
uniform angular velocity n about a horizontal azis in its own plane. Supposing the
motion of the sphere to take place in a vertical plane perpendicular to the azxis of
rotation, find the motion of the sphere relatively to the plane.

Let Oz be the trace described by the sphere as it rolls on the plane, and let
Oy be drawn through the axis of rotation perpendicular to Oz in the plane of
motion of the sphere, Let nt be the angle Oz makes with a horizontal plane
through the axis of rotation. Let ¢ be the angle that radius of the sphere which was
initially perpendicular to the plane makes with the axis of y. Let z, y be the
co-ordinates of P the centre of the sphere and Mk? the moment of inertia of the
sphere about a diameter.

If the sphere were fixed relatively to the plane its effective forces would be Ma?z
and Mn%y acting at the centre of gravity, and a couple Mi?dn/dt=0 round the
centre of gravity. Also the impressed force, viz. gravity, i8 equivalent to gsin nt
and — g cosnt parallel to the moving axes, The equation of Vis Viva for relative
motion is therefore

a [(d=\' (Y}’ d¢ : dz dy
L 57 {(dt) + dt) +k’(at } n.t—+n’y +gsmntd -geosmt.
Here dafdt=a dg|d: and dy/dt=0. We have therefore :

) (1 ) W—n’x+gsinnt.
This equation might also have been derived from the formuls for movmg axes
given in Vol. 1,.Chap. 1v.
If k*=} a? this equation leads to

59
T=-15 - = sinnt+Ae

where 4 and B are two constants which depend on the initial conditions of the
sphere.

nv§e -nVe
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On Motion relative to the Earth.

33. The motion of a body on the surface of the earth is not
exactly the same as if the earth were at rest. As an illustration
of the use of the equations of this chapter, we shall proceed to
determine the equations of motion of a particle referred to axes
of co-ordinates fixed in the earth and moving with it. -

i Let O be any point on the surface of the earth whose latitude
is \. Thus A is the angle the normal to the surface of still water
at 0. makes with the plane of the equator. Let the axis of z be
vertical at O and measured positively in the direction opposite to
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gravity.  Let the axes of « and y be respectively a tangent to the
meridian and a perpendicular to it, their positive directions being
respectively south and west. In the figure the axis of y is dotted
to indicate that it is perpendicular to the plane of the paper. Let

v . 4 '
(/"‘ P d

——

@ be the angular velocity of the earth, b the distance of the point .

O from the axis of rotation.-

We may reduce the point O to rest by applying to every
point under consideration an acceleration equal and opposite to
that of O, and therefore equal to w5 and tending from the axis of
rotation. We must also apply a velocity equal and opposite to
the initial velocity of 0. This velocity is wb. The whole figure
will then be turning about an axis OI, parallel to the axis of
rotation of the earth with an angular velocity o.

‘When the particle has been projected from the earth it is-acted
on by the attraction of the earth and the applied acceleration
o’b. The attraction of the earth is not what we call gravity.
Gravity is the resultant-of the attraction of the earth and the
centrifugal force, and the earth is of such a form that this resultant
acts perpendicular to the surface of still water. If it were not
s0,. particles resting on the earth would tend to slide along the
surface. It appears, therefore, that the force on the particle,
after’O has been reduced to rest, is equal to gravity. - Let this be
represented by g. Besides this there may be other forces on the
particle, let their resolved parts parallel to the axes be X, ¥, Z.

Since the earth is turning round OI with angular velacity o,
the resolved part about Oz is e sin), since the angle 70z is the
complement of w; since the rotation is from west to east, the
resolved angular velocity is from y to z, which is the negative
direction, hence 6,=—w sinA. The resolved angular velocity
round Oz is w cosA and is from y to 2z, which is the positive
direction, hence 6, = » cosA. Also since OI is perpendicular to

2—2
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Oy, 6,=0. Hence, by Art. 4, the actual velocities of any particle
whose co-ordinates are (z, y, z) are

u-d—£+msinx'y

dt

v=¢_l_3_/__” COSAZ — @ Sin Az
dt
dz

w=zt-+mcos7ty

To find the equations of motion it is only necessary to substitute
these in the equations of Art. 5. '

The resulting equations may be simplified if we neglect such
small quantities as the difference between the force of gravity at
different heights. If @ be the equatorial radius of the earth and
g the force of gravity at a height z, we have ¢’ =g (1 —2z/a)
nearly. Now w%a is the centrifugal force at the equator, which is
known to be y}59. Hence if we neglect the small term gz/a we
must also neglect w'z. The equations will therefore become

L)
‘f—d:+2m sinx%'—:=X
d%y ds . de
. ﬁ—&» oust—stmth—Y -
L]
%;+2mcos7\.%=-—g+z

where the terms (X, Y, Z) include all the accelerating forces,
except gravity, which act on the particle. These equations agree
with those given by Poisson, Journal Polytechnique, 1838.

34. If we do not neglect the term containing «® the equations
of motion are ,

%Z’+ 20 sink%’—w’ sin®Az — o* sin\ cosAz = X,

d* . dz . | dz

a—t','/—_2w cos)\.-‘Tt—2w sm)»(—lz—m’y= Y,

£

fid—tf+2w cosxj-—'z—i_u' cog’Az — " sin\ coBAr=—g + Z.

85. As an example, let us consider the case of a particle dropped from a
height . The initial conditions are therefore z, y, dz/dt, dy/dt, dz/dt all zero, and
z=h. As a first approximation, neglect all the terms containing the small factor c«.
Then we have 2=0, y=0, z=h - 3g¢s. .

For a second approximation, we may substitute these values of (z, y, z) in the
small terms. We have after integration

=0, y=—-3woos \gt}, z=h-}gt3,
Thus there will be a small deviation towards the east, proportional to the cube
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of the time of descent. There will be no southerly deviation, and the vertical
motion will be the same as if the earth were at rest.

An elementary demonstration of this result will make the whole argument
clearer. Let the particle be dropped from a height & vertically over O. Then O
being reduced to rest, the particle is really projected eastwards with & velocity
whecos\. Hence, if the direction of gravity did not alter owing to the rotation of
the earth about 01, the particle would deseribe a parabola and the easterly deviation
would be (wh cos \) t where ¢t is the time of falling. . Since h=3g¢3, this deviation is
4 wcos)gtd. The rotation w about OI is equivalent to wsin \ about Oz and woos \
about Oz. The former does not alter the position of OC the normal to the surface
of the earth, which is the direction of gravity. The latter turns OC in any
time ¢ through an angle wcos\t, Thus gravity gradually changes its direction
as the particle falls. The particle is therefore acted on by a westerly component
=g sin (w cos At), which, since wt is small, is nearly equal to gwcos At. Let 5’ be the
distance of the particle from the position of the plane zz in space at the moment
when the particle began to fall, and let ' be measured positively to the west. The
equation of motion of the particle in space is therefore d*//dt*=gwtcos). Inte-
grating this and remembering that as explained above dy'/dt= ~ whcos\ when
t=0, we get y'= — wht cos A +3gwt® cos\. When the particle reaches the ground we
have y’=y very nearly and k=}gt3, thus the deviation westwards is —Jugt® cos ),
which is the same as before, If it be not evident that ' =y, it may be shown thus.
In the time ¢ Oy, Oz have turned through a very small angle ¢=w cos \t, hence, a8
in transformation of axes, ' =y cos@— z sin 6, which gives y'=y when we reject the
squares of 6. ’

36. In many cases it will be found convenient to refer the
motion to axes more generally placed. Let O be the origin, and
let the axes be fixed relatively to the earth, but in any directions
at right angles to each other. Let 6, 6,, 6, be the resolved
parts of ® aﬁout these axes, then @,, 6,, 6, are known constants.
After substituting from Art. 4 in the equations of motion given
in Art. 5 we get

d'z  dy dz ,
@i htig =X
dy . de do ,
a " lght2ge=T

'z _dr dy ,
ap2g ity h=matZ

For example, if we wished to determine the motion of a projectile, it will be
convenient to take the axis of z vertical and the plane of xz to be the plane of
projection. Let the axis of z make an angle 8 with the meridian, the angle being
measured from the south towards the west. Then

0,=wcos\cosB, 0,=-wcosAsinB, O3=—wsinA.

These equations may be solved in any particular case by the
method of continued approximation. If we neglect the small
terms we get a first approximation to the values of (z, y, 2). To
find a second approximation we may substitute these values in the
terms containing o and integrate the resulting equations. As
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these.equations are only true on the supposition that * may be
neglected, we cannot proceed to a third approximation.

37. Ex. 1. A particle is projected with a velocity ¥ in a direction making an
angle a with the horizontal plane, and such that the vertical plane through the
direction of projection makes an angle 8 with the plane of the meridian, the angle 8
being measured from the south towards the west. If z be measured horizontally in
the plane of projection, y be measured horizontally in & direction making an angle
B+3}~ with the meridian, and z vertically upwards from the point of projection,
prove that 2=V co8 at + (V sin at* - } gt%) w co8 A 8in 8,

. y=(V sin at? - } gt%) w cos \ cos 8+ ¥ 008 at*w sin ),

) z=Vsinat- }g¢* - V cos at*w cos \ 8in &,

where A is the latitude of the place, and w the angular velocity of the earth about
its axis of figure.

8how also that the increase of range on the horizontal plane through the point
of projection is 4wsin Bcos A sina (} 8in? a - cos? a) V3/g3, :
and the deviation to the right of the plane of projection is

4w sin%a (§ 008 \ 008 B8in a + 8in \ cos a) V3/g2.

Ex. 3. A bullet is projected from a gun nearly horizontally with great veloeity
so that the trajectory is nearly flat, prove that the deviation is nearly equal to
Rtw sin \, where R is the range, and the other leiters have the same meaning as in
the last question. The deviation is always to the right of the plane of firing in the
Northern hemisphere, and to the left in the Southern hemisphere. It is asserted
(Comptes Rendus, 1866) that the deviation due to the earth’s rotation as calculated
by this formula is a8 much as half the actual deviation in Whitworth’s gun.

Ex. 3. A spherical bullet is projected with so great a velocity that the resistance
of the air must be taken into account. The resistance of the air being assumed to
be k (vel)?, and the trajectory to be flat, prove that, neglecting the effects of the
rotation of the earth,

’ kz=log(1+kVt) kPy=2wsin\ (Vt-z)
4kV?*(z -z tan a + 8in B oot \y) = — g 2Vt - 22+ kV302).
These are given by Poisson, Journal Polytechnique, 1838.

38. Disturbance of a Pendulum. Let us apply the equa-
tions of Art. 86 to determine the effect of the rotation of the earth
on the motion of a pendulum. In this as in some other cases, it
will be found advantageous to refer the motion to axes not fixed in
the earth but moving in some known manner. Let the axis of z
be vertical as before and let the axes of # and y move slowly
round the vertical with angular velocity  sin A in the direction
from the south towards the west. In this case we have

0,=wcoshcosB, 6,=—wcoshsinp,

and A 0,=—wsinA+wsinA =0,

where 8 is the angle the axis of # makes with the tangent to the
meridian, so that d8/dt = wsinA. If, as before, we neglect quanti-
ties which contain the square of o as a factor, the terms which
contain df,/dt and df,/d¢ must be omitted. Hence the required
equations may be obtaincd from those of Art. 36, by putting 6,=0.
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_ If mbe the mass of the particle, I the length of the string, and
T the tension; these equations are .

d’ . . d T . . 1
_d;-szO.SKSIDBd_j:—;‘% .
Ty dz__ Ty -
'dt’_zmcosxoosﬁit_fﬁl L,
.d'z . dz dy__ Tz
dt,—+2acoshsm,3m+2wcos7\cosﬁE__g_i_ﬁ >

the origin being taken at the lowest point of the arc of oscillation.

If the oscillation be sufficiently small z will differ from zero by
small quantities of the order a* where a is the semi-angle of oscil-
lation. The last equation then shows that T' differs from mg by
quantities of the order wz at least. If then we neglect terms of the
order w2® and a®, we may put mg for T' in the two first equations
and neglect the terms containing w dz/d¢. The equations of motion
thus become the same as for a pendulum attached to a fixed
point. The solutions of the equations are clearly

w=Acos(\/%t+C), y=Bsin(\/'%t+D). .

The small oscillations of a pendulum on the earth referred to
axes turning round the vertical with angular velocity wsin A are
therefore the same as those of an imaginary pendulum suspended
from an absolutely fixed point.

Let us then suppose the pendulum to be drawn aside so as to
make with the vertical a small angle a and then let go. Relatively
therefore to the axes moving round the vertical with angular
velocity w sin A we must suppose the particle to be projected with
a velocity lsinawsin\ perpendicular to the initial plane of dis-
placement. We have tﬁ:n when ¢=0, z=1la, y=0, dz/dt =0,
dy/dt=—lawsin . It is then easy to see that in the above values
of « and y, C and D are both zero and that the particle de-

scribes an ellipse, the ratio of the axes being wsinA (}/g)}. The
effect of the rotation of the earth is to make this ellipse turn
round the vertical with uniform angular velocity wsinA in a
direction from south to west. If the angle a be not so small
that its square may be neglected, it is known by Dynamics of a
particle that, independently of all considerations of the rotation
of the earth, there will be a progression of the apsides of the
cllipse. It is therefore necessary for the success of the experi-
ment that the length ! of the pendulum should be very great.
This motion of the apsides depending on the magnitude of « is in
the opposite direction to that caused by the rotation of the earth.

It also appears that the time of oscillation is unaffected by the
rotation of the earth, provided the arc of oscillation be so small
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that the effects of forces whose magmitude contains the factor wa®
may be neglected.

89. Ex 1. In Foucault’s experiment, a long pendulum is suspended from a
point over the centre of a circular table, and the aro of oscillation is seen to pass
from one dismeter to another. Show that the arc of the eircular rim of the table
described by the plane of oscillation in one day is equal to the difference in length
between two parallels of latitude one through the centre and the other through the
northern or southern extremity of the rim. This theorem is due to Prof. J. R.
Young. :

Ex. 2. A heavy particle is suspended from a fixed point of support by a string
. of length a and the effect of the rotation of the earth is neglected. In the two
following cases the path of the particle is very nearly an ellipse whose apses advance
in each complete revolution of the particle through an angle 8.2x. If b and ¢ be
the major and minor semi-axes of the ellipse, prove (1) when b and ¢ are small
compared with a, that 8=4bc/a?, and (2) when b and ¢ are not small compared with
a, but are very nearly equal, that (8+1)~2=1-§b*/ad.

Ex. 8. A pendulum, at rest relatively to the earth, is started in any direotion
with a small angular velocity, show that the oscillations will take place in a vertical
plane turning uniformly round the vertical so that the pendulum becomes yertical
once in each half oscillation,

Ex. 4. Let 6 be the angle a pendulum of length I makes with the vertical, and
¢ the angle the vertical plane containing the pendulum makes with a vertical plane
which turns round the vertical with uniform angular velocity wsin \ in a direction
from south to west. Prove that when terms depending on «? are negleoted the
equations of motion become

(7 + s1n: ( 00! 0+4,

d (.., . de
a (sm = ) 2sin Ocos(¢+ﬂ)woos)‘d¢

where 4 is an arbitrary constant, and the other letters have the meanings given to
them in Art. 36, See M. Quet in Liouville’s Journal, 1853.

These equations will be found convenient in treating the motion of a pendulum.
They may be easily obtained by transforming those given in Art, 38 to polar co-
ordinates.

Ex, 5. A semi-ciroular arch ACB is fixed with its plane vertical on a horizontal
wheel at 4 and B, and may thus be moved with any degree of rapidity from one
azimuth to another. A rider slides along the inner edge of the arch which is
graduated and may be fixed at any degree marked thereon. A spiral spring by
means of which a slow vibration is obtained with comparatively a short length is
attached at one end to a pin in the axis of the semicircle so that the point of
attachment may be in the axis of rotation and at the other end it is fixed to a
similar pin in a parallel position fixed to the rider. The vertical semicircle is not
placed in a diameter of the horizontal wheel but parallel to it at such a distance as
_not to interrupt the eye of the observer from the vertical plane passing through the
diameter, and in which plane the wire in all its positions remains,

If the rider be placed at an angular distance 6 from the highest point of the
arch and the wire set in vibration in any plane, show that the plane of vibration of
the wire will make a complete revolution relatively to the arch while the arch turns
round sec @ complete revolutions. This is best observed by fixing the eye on a line
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in the same plane with the wire while walking round with the wheel during its
rotation. This apparatus was devised by Sir C. Wheatstone to illustrate Foucault’s
mechanical proof of the rotation of the earth. Proceedings of the Royal Society,
May 22, 1851.

40. Disturbance of motion in one plane. In the first volume of this treatise
& chapter has been devoted to the discussion of the motion of a body or a system of
bodies constrained to remain in a fixed plane. This plane has been treated as if it’
were really fixed in space. But since no plane can be found which does not move
with the earth, it is important to determine what effect the rotation of the earth will
have on the motion of these bodies. Let us treat this as an example of the method
of Clairaut and Coriolis given in Art. 25.

Let the plane make an angle A with the axis of the earth. Let a point 0 in
this plane be on the surface of the earth and let it be reduced to rest. Then, as
proved in Art. 33, the moving bodies while in the neighbourhood of O are acted on
by their weights in a direction normal to the surface of the earth. The earth is
now turning round an axis through O parallel to the axis of figure with a constant
angular velocity w. Let this angular velocity be resolved into two, viz., —wsiu\
about an axis perpendicular to the plane and wcos \ about an axis in the plane,
Now the square of w is to be rejected, hence by the principle of the superposition of
small motions, we may determine the whole effect of these two rotations by a.ddmg
together the effects produced by each separately.

It is & known theorem that if a particle be constrained to move in a plane which
turns round any axis in that plane with a constant angular velocity w cos), the
motion may be found by regarding the plane as fixed and impressing an acoelera-
tion w?r cos?\ on the particle, where r is the distance of the particle from the axis.
This may be deduced, as in Art. 26, from the theorem of Clairant. This impressed
acceleration is to be neglected because it depends on the square of w. The angular
velocity w cos \ has therefore no sensible effect.

If the bodies be free to move in the plane, the effect of the rotation — w sin A is to
turn the axes of reference round the normal to the plane drawn through the poing
O. 1f then we calculate the motion without regard to the rotation of the earth,
taking the initial conditions relative to fixed space, the effect of the rotation of the
earth may be allowed for by referring this motion to axes turning round the normal
with angular velocity — wsin\, For example, if the body be a heavy particle sus-
pended by a long string from a point O fixed relatively to the earth, it is really
‘constrained to move in a horizontal plane, and the reasoning given above shows
that the plane of oscillation will appear to a spectator on the earth to revolve with
angular velocity —w sin A round the vertical.

If the bodies be constrained to revolve with the plane, it will be required to find
the motion relatively to that plane. We must therefore apply to each particle the
force of moving space and the compound centrifugal force. If r be the distance of
any particle of mass m from O, the former is mrw?sin?\. This is to be neglected
becanse it depends on the square of w. The latter is therefore the only force to be
considered. By Art. 28, the compound centrifugal forces on all the particles of a
body are equivalent to a force at the centre of gravity and three couples. In our
case these couples are easily seen to be zero. For if the plane be taken as the plane
of xy, we have ,=0, Q,=0, wlﬁo, wy=0. Hence L, M, N are all zero, 1If, there-
fore, m be the mass of a body, V the relative velocity of its centre of gravity, the
effect of the rotation of the earth may be found according to the rule given in Art,
25; by impressing on the body a force equal' o ~ 2mVw sin A, acting at the centre of



26 MOTION RELATIVE TO THE EARTH.

gravity, in the plane of motion and perpendicular to the direction of motion of the
centre of gravity.

The ratio of this force to gravity for a particle moving 32 feet per second, is at
most 4x/24.60.60, which is less than a five thousandth. This is so small that,
except under special circumstances, its effect will be imperceptible,

41. Disturbance of the motion of a rigid body. Hitherto
we have considered chiefly the motion of a single particle. The
effect of the rotation of the earth on the motion of a rigid body
will be more easily understood when the methods to be described
in the following chapters have been read. 1If, for example, a body
be set in rotation about its centre of gravity, it will not be difficult
to determine its motion as viewed by a spectator on the earth,
when we know its motion in space. It seems, therefore, sufficient
here to consider the peculiarities which these problems present,
and to-seek illustrations which do not require any extended use of
the equations of motion.

42. The effect of the rotation of the earth is in general so
small compared with that of gravity, that it is necessary to fix the
centre of gravity in order that the effects of the former may be
perceptible. Even when this is done, the friction on the points of
support and the other resistances, cannot be wholly done away
with. If, however, the apparatus be made with care that these
resistances should be small, the effects of the rotation of the earth
inay be made to accumulate, and after some time to become
sufficiently great to be clearly perceptible.

If a body be placed at rest relatively to the earth and free to
turn about its centre of gravity as a fixed point, it is actually in
rotation about an axis parallel to the axis of the earth. Unless
this axis be a principal axis, the body would not continue to rotate
about it, and thus a change would take place in its state of
motion. By referring to Euler’s equations, we see that the change
in the position of the axis of rotation is due to the terms
(4-Bww, (B-C)ow, ((—A)ww,. The body having been
placed apparently at rest, o, »,, ®, are all small quantities of
the same order as the angular velocity of the earth; these terms
are, therefore, all of the order of the squares of small quantities.
Whether they will be great enough to produce any visible effect
or not will depend on their ratio to the frictional forces which
could be called into play. But since these frictional forces are
just sufficient to prevent any relative motion, these terms will in

eneral be just cancelled by the frictional couples introduced into
the right-hand sides of Euler's equations. The body will, there-
fore, continue at rest relatively to the earth.

In order that some visible effect may be produced, it is usual
to impress on the body a very great angular velocity about some
axis. If this be the axis of w,, the terms in Euler’s equations,
which are due to the centrifugal forces, and which contain w, as a

-, et e
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factor, become greater than when , had no such initial value.
The greater this initial angular velocity, the greater these terms
will be, and the more visible we may expect their effects on the
body to be.

f the angular velocity thus communicated to the body be
sufficient to turm it only once in a second, it will be still
24 x 60 x 60 times as great as the angular velocity of the earth.
In these problems, therefore, we may regard the angular velocity
of the earth as 80 small, compared with the existing angular
Ireloc(iities of the body, that the square of the ratio may be neg-
ected.

As an example of the apl;)lication of these principles, we have
selected one case of Foucault’s pendulum, which seems to admit of
an elementary solution.

. 43. The centre of grawity of a solid of revolution is fized,
while the axis of figure 18 constrained to remain in a plane fized
relatively to the earth. The solid being set in rotation about its
axis of figure, 1 18 required to find the motion.

Let us refer the motion to moving axes. Let the centre of
gravity be the origin, the plane of yz the plane fixed relatively to
the earth, Let the axis of figure be the axis of 2, and let it make
an angle y with the projection of the axis of rotation of the earth
on the plane of yz. Let this projection, for the sake of brevity, be
‘ealled the -axis of . Let p be the angular velocity of the earth
about its axis, a the angle the normal to the plane of yz makes
with the axis of the earth. We suppose p to be reckoned positive
when the rotation is in the standard direction usually taken as
-positive, i.e. when viewed from the positive extremity of the axis,
the rotation appears to be in the direction of the hands of a watch.
Since the earth turns from west by south to east, it. follows, if the
angle a be measured from the northern extremity P of the axis,
that p is really negative and is represented in Art. 33 by —w. The
motion of the moving axes is given by .

ax
0l=pcosa+7it—,
6,=psinasiny,
0,=psinacosy.

Let »,, o,, ®, be the angular ve-
locities of the body about the moving
axes; A, A, C the principal moments L
of inertia at the centre of gravity.
Let R be the reaction by which the y
axis of figure is constrained to remain
in the fixed plane, then R acts
parallel to the axis of #. Let % be the distance of its point of
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application from the origin. The angular momenta about the
axes are respectively

h=4ov, k=40, h,=Co,
Substituting in Art. 16, the equations of motion are

A% 400, + C08,=0 l
d

4 7‘:1 - Cob,+ Awb,= Rk }.
d

c 7“;! ~dwf, + Ao g, =0 J

Since the axis of z is fixed in the body, we see by Art. 3, that
w,=0,, w,=0,. The last equation of motion, therefore, shows that
o, 18 constant. It should however be remembered that w, is not
the apparent angular velocity of the body as viewed by a spectator
on the earth. If £, be the angular velocity relatively to the
moving axes, we have by Art. 3, ), =, —6,, so that

Q, + p sin a cos x = constant.

Thus the body, if so small a difference could be perceived, would
appear to rotate slower or quicker the nearer its axis approached
one extremity or the other of the projection of the axis of the
earth’s rotation on the fixed plane.
The first equation of motion after substitution for ,, »,, 6,, 6,,
their values in terms of , becomes
A gt’,‘— Ap’ sin*a sin 5y cos x + Cnp sin asin y = 0,
where n has been written for w,. The second term may be re-
jected as compared with the third, since it depends on the square
of the small quantity p. We have, therefore,
d

#‘=—§npsinasinx.

-This is the equation of motion of a pendulum under the action
of a force constant in magnitude, and whose direction is along the
axis of y, t.e the projection of the axis of rotation of the earth
on the fixed plane. The body being set in rotation about its axis
of figure, we see that that axis will immediately begin to approach
one extremity or the other of the axis of ¥ with a continually
increasing angular velocity. - When the axis of figure reaches the
axis of y, its angular velocity will begin to decrease, and it will
come to rest when it makes an angle on the other side of the
axis of y equal to its initial value. The oscillation will then be
repeated continually.

The axis of figure will oscillate about that extremity of the
axis of , which, when x is measured from it, makes the coefficient
"on the nght-hand side of the last equation negative. This extre-
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mity is such, that when the axis of figure is passing through it,
the rotation n of the body is in the same direction as the resolved
rotation p of the earth.

44. If we compare bodies of different form, we see that the
time of oscillation depends only on the ratio of C' to 4. It is
otherwise independent of the structure or form of the body. The
greater this ratio the quicker will the oscillation be. For a solid
of revolution this ratio is greatest when Zmz*=0. In this case
the ratio is equal to 2, and the body is a circular disc or ring.

45. If we compare the different planes in which the axis may
be constrained to remain, we see that the motion is the same for
all planes making the same angle with the axis of the earth. It is
therefore independent of the inclination of the plane to the horizon
at the place of observation. The time of oscillation will be least,
and the motion of the axis most perceptible when a = } 7, ¢.e. when
the plane is parallel to the axis of rotation of the earth. If the
plane be perpendicular to the axis of the earth, the axis of figure
will not oscillate, but if the initial value of dy/dt is zero, it will
Temain at rest in whatever position it may be placed.

46. Ex. 1. Show that a person furnished with the particular form of Fou-
cault’s pendulum just deseribed, could, without any Astronomical observations,
determine the latitude of the place, the direction of the rotation of the earth, and
the length of the sidereal day. This remark is due to M. Quet, who has given a
different solution of this problem in Liouville’s Journal, Vol. xvirr.

Ex. 2. If the body be a rod, and its centre of gravity supported without friction,
prove that it could rest in relative equilibrium either parallel or perpendicular to
the projection of the earth’s axis on the plane of constraint. If it be placed in any
other position, its motion will be very slow, depending on p?, but it will oscillate
about a mean position perpendicular to the projection of the earth’s axis.

Ex. 8. If the axis of figure be acted on by a frictional force producing a
retarding couple, whose moment about the axis of z bears a constant ratio u to the
moment of the reactional couple about the axis of y, and if the fixed plane be
parallel to the axis of the earth, find the small oscillations about the position of
equilibrium. Show that the position at any time ¢ is given by

x=Le~Mcos [(Cnp/4 - M)}t + M],
where 24\=u(Cn—24r) and L and M are two constants depending on the initial
conditions.

. Ex. 4. The centre of gravity of a solid of revolution is fixed, while the axis of
figure is constrained to remain in the surface of a smooth right cone fixed relatively
to the earth. Show that the axis of figure will oscillate about the projection of the
axis of rotation of the earth on the surface of the cone, and that the time of a com-
plete small oscillation about the mean position will be 2 (4 sine/Cpnsin B)i,
where ¢ is the semi-angle of the cone, 8 the inclination of its axis to the axis of the
earth, and the other letters have the same meaning as before. This result is due to
M. Quet.
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Ex. 5. Two equal heavy rods CA4, CB are conneeted by a hinge at C, with a
spring so that they tend to make a known angle with each other. The free ends
4 and B are then tied together and the whole is suspended by a string OC attached
to the hinge. The system is left to itself until it is at rest relatively to the earth.
If the string whieh fastens 4 and B be now cut, the arms separate from each other.
Show that the system will immediately have an apparent angular velocity round
the vertical equal to psin\ (I' - I)/I', where I, I' are the moments of inertia of the
system about the vertical OC respectively before and after the string joining 4 and
B was cut, p is the angular velocity of the earth about its axis and X is the latitude
of the place. In which direction will the system turn? This apparatus was
devised by M. Poinsot who considered that the experiment would be so effective
that the latitude of the place could be deduced from the observed anguhr velocity.
Bee Comptes Rendus, 1851, Tome xxx11. page 206. :

Ex. 6. If a river is flowing due north, prove that the pressure on the eastern
bank at a depth 2 is inoreased by the change of latitude of the running water in
the ratio gz+bvwsinl : gz, where b is the breadth of the stream, v its velocity, I the
latitude and w the angular velocity of the earth about its axis. [Math. Tripos, 1875.]

Ex. 7. A wave like the Tide-wave travels along a river with its erest at right
angles tothebanks. Deduce from Clairaut’s rule (Art. 25) that the tide is higher on
one bank than on the other, and show that the height of the tide decreases in
geometrical progression for equal increments of distance from one bank. .

The general line of argument is as follows. Since the motion of the water is’
very nearly in a horizontal plane we may (by Art. 40) disregard the rotation of the
earth provided we apply to every particle an acceleration 2wvsin \ perpendicular to:
its direction of motion, i.e. perpendicular to the direction of the river. Hence the
river must be so much higher on one side than the other that the pressure due by
gravity to the difference of level is equal to that due to the applied acceleration,
If ¢ be the altitude of the tide above the mean level at a distance y from that side
of the river at which the tide is highest, we have — gd¢=2wvsin\dy. But in the
theory of tides as undisturbed by the rotation it is proved that v is proportional to ¢.
The result follows by integration.

e — A — e —



CHAPTER II.

OSCILLATIONS ABOUT EQUILIBRIUM.

Lagrange’s Method with sndeterminate multipliers.

47. IN the first volume of this treatise Lagrange’s method
_of finding the small oscillations of a system about a position of
equilibrium has been explained. It is our object, not to repeat
those explanations, but rather to examine how that theory is
modified by the use of indeterminate multipliers. Ina dynamical
problem it generally happens that we want to know how some
particular quantities change with the time. Now it is one of the
chief advantages of Lagrange’s method that it gives a large choice
of quantities which may be taken as co-ordinates. The quantities
we most wish to find are therefore usually chosen for the inde-
pendent co-ordinates and their variations can then be found from
Lagrange’s equations. But sometimes we find that this introduces
a great complication of symbols. Perhaps we lose thereby some
principle of symmetry which would have abbreviated and simplified
the whole process. We now propose to consider what modifications
must be introduced into the equations when those particular
equations whose values we most require cannot be conveniently
introduced as independent co-ordinates. For this purpose the
method of indeterminate multipliers may be used with  great
advantage,

48, Let the system be referred to any co-ordinates 6, ¢, &c.
which are so small that we may reject all powers of them except
the lowest which occur. They should therefore be so chosen that
they vanish in the position of equilibrium. Let n be the number
of those co-ordinates. Assuming that the geometrical equations
do not contain the time explicitly the vis viva 27" will be a’ quad-
ratic function of the velocities, and may therefore be expanded
in a series of the form

2T=A,0"+24,,0¢ + 4,¢" + &c. :
Here the coefficients 4,,, &c. are all functions of 6, ¢, &c. and we
may suppose them to be expanded in a series of some powers of
these co-ordinates. Since the oscillations are 8o small that we may
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reject all powers of the small quantities except the lowest which
occur, we may reject all except the constant terms of these series.
We shall therefore regard the coefficients 4, , &c. as constants.

We must now make an expansion for the force function U
in a series of powers of 6, ¢, &c. If the co-ordinates 6, ¢, &c. were
all independent, the terms containing the first powers would
vanish, because by the principle of virtual velocities dU/d6,
dU/d$, &c. are zero in the position of equilibrium for all variations
of 6, ¢, &c. which are consistent with the geometrical conditions.
But as this does not necesarily occur when 6, ¢, &c. are connected
by geometrical relations, we take as our expansion

U-U,=C0+C¢+&c +3C,60 +C0¢+C "+ &c.,
where U, is a constant which is easily seen to be the value of U in
the position of equilibrium. We may notice that the coefficients
C, C,, &c. are not unrestricted. They must be such that the
equations of equilibrium are all satisfied.

Since the co-ordinates 8, ¢, &c. are not independent there will
be some geometrical relations which connect them. To simplify
matters, let us suppose that there are but two such relations. Let
these be f(6, ¢, &c.)=0, F (0, ¢, &c.)=0. We may also expand
these in powers of the co-ordinates in the following manner :

=G0+ G+ &c.+ 34,6+ G 09+ }Q,.¢" + &e.
F=H@6+ Hgp + &c. +3H,,60" + H 0 + $H '+ &c.
The constant terms of these series are omitted because the geome-
trical equations are to be satisfied when the system is in equili-
brium, s.e. when =0, ¢ =0, &ec.

We have now to substitute these series in the Lagrangian

equations. Referring to Chap. VIIL of Vol 1. these are represented

by the type
Y ddl dT _dU _df dF

dtdo " as=do TrdetHqe

with similar equations for ¢, ¥, &. Here A, u are indeterminate
multipliers whose values have to be found from the equations thus
written down. The results of these substitutions are obviously
A0 +&c.=C+C0+&c. +\ (G, + &)+ pu (H, + &),
A0+ &e.=C,+ C 0+ &c. + N (G, +&c.) + p (H, + &c.),
&c. = &e. '

49. Since the system has been disturbed from a position of
uilibrium these equations are all satisfied by 8 =0, ¢ =0, &c.
e thus obtain the equilibrium values of A\, u. Let these be
Ags My Then '
. ' 0=Cx+xoGt+”oHl
: 0=0'+X°G,+ TN R
0= &ec. :
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These are the equations of equilibrium already alluded to. The force
function U being a known function of the co-ordinates, the co-
efficients C,, C,, &c. are all known; and thus any two of these
equations will determine X\,, u,. The remaining equations will
then be identically satisfied, because the quantities C,, C,, &c. are
not unrestricted but are such that the equations of equilibrium
are all satisfied.

Let the dynamical values of Aand wbe M =7, + A, =y, + g,
Then A, and u, are small quantities whose squares can be rejecte&.
The equations of oscillation then become

4.0 +A4,.¢"+..=C,0+0C.d+...
N0+ + . )+ NG,
Ag +I‘o(§ug+g:¢+ "')‘+"|Hx
w0+ A +...=C0+Cpdp +...
+2, (G 0+ G +...)+0\G,
+ ttg (Hob+Hed +..) + i, H,
c. = &e. .
‘We have here as many equations as there are co-ordinates. Besides
these we have as many geometrical equations as indeterminate
multipliers. These are

GO+Gp+...= 0}

HO+Hp+..=0)"
Thus we have on the whole sufficient equations to find all the un-
known quantities 6, ¢ ... A, p,

50. To solve these we proceed exactly as in the corresponding
method described in Vol. 1, where the co-ordinates 6, ¢, &c. are all
independent, except that we now include A,, x, amongst the
variables to be determined. We take as our typ'cai solution

0=Msin (pt+a), ¢=Nsin(pt+a), &e.
M =D sin (pt+a), p,=Esin(pt+a)
Substituting these in the equations we see that sin (pt + a) can be
divided out from every equation. Writing
) C,,=Cy+ MG, + 1, H,
Gn =0, +7,G,+pH, ¢,
&e.= &e.
we thus obtain
(4,p"+0,) M+ (4,p"+C)N+...4+GD+HE=0
4,0+ 0 )M+ (Ayp*+C)H)N+ ...+ G D+ HE=0

&c.=0
GM+GN+... =0
HM+HN +... =0
Eliminating the ratios M, N, &ec. D, E, we have the determinantal

equation
R. D, II, 3
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Aup"*'_on' Aup"" 6‘., oo Gv Hx =0.
Aup."'dn' Anp’+au’ b GI’ ‘Ha
&e. , &e. , &c., &c.
G , G , 0,0
H , H , 0,0
If there be n co-ordinates, this is an equation of the nth degree to
find p*. Taking any root positive or negative, the preceding equa-
tions determine the corresponding ratios of M, N, &c. Taking all
the roots in turn and adding together these partial solutions we
have a solution complete with its 2n constants. These constants

have to be determined from the initial values of the co-ordinates
and their velocities.

51. This determinant differs from that used when there are
no indeterminate multipliers in two respects. (1) There is a
change in the quantities C,,, C,,, &c. represented by the insertion
of the bar over the letters, (2) the determinant is bordered by the
coefficients G,, H,,&c of the first powers of the co-ordinates in the
geometrical equations.

We notice that there is a very great simplification of the
process when the force function s m’gr that the coefficients of the
. Jirst powers 3/' the co-ordinates in its expansion are all zero. In

this case C,, C,, &c. are zero, hence from the equations of equilibrium
A=0, 4,=0. Thus C,,=C,, C,=0,, &.=&c. It immediately
follows that it is unnecessary to calculate the terms of the second
order in the geometrical equations, for these disappear from the
equations of motion. This of course is an important simplification.
Further the final determinant only differs from that used when
there are no indeterminate multipliers by being bordered by the
coefficients @, &c. H,, &e. .

This simpiiﬁcation occurs when the position about which the
system oscillates 1s a position of equilibrium for all variations of
the co-ordinates although the constraints compel the system to oscillate
in a given limited manner.

52. Brief Summary. In order to indicate the method of
proceeding in any particular case we shall now sum up the general
line of argument. . :

Expand the semi vis viva T' and the force function U in powers
of the co-ordinates 6, ¢, &c. and their differential coefficients
&, ¢, &c. all powers aboye the second being rejected. Multiply
the geometrical relations f=0, F=0 by A=A+ A\, and p =p,+ u,
where A, and u, are small quantities of the same order as the co-
ordinates 6, ¢, &c. and expand these products, all powers of the
small quantities above the second being rejected. First, taking
the expression U + Af+ uF, equate to zero the coefficient of the
first power of each co-ordinate, we thus have equations to find

i —— . it
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© N, p. Secondly, omitting the accents in the expression for T"and
also the constant terms in U, form the discriminant of

Tp*+ U+ N +ulF
with regard to the co-ordinates and the subsidiary variables A, u,.

Equating this determinant to zero, we have an equation to find the
values of p. '

53. On Principal Oscillations. The equations which deter-
mine the constants M, N, &c. D, E are shown above. Solving
these we see that their ratios are equal to the ratios of the minors
of the constituents of any row we please in the determinantal
equation. If we represent these minors by I, (p*), I, (p"), &c. the
oscillations of the system are represented by

0=L, I, (p)sin (pi+a)+L, L, (p,') sin (p,t + 2) + &e.
&¢= gl L, (p)sin (pt+a,) + L1, (p,) sin (pt +a,) + &
C. = &XC. .

where L,, L, &c. are constants which depend on the initial con-
ditions.

When the initial co-ordinates are such that all the constants
L,, L,, &c. vanish except one, the expressions for 6, ¢ ...\, u are
reduced to the trigonometrical expressions in some one column.
The co-ordinates 6, ¢, &c. then bear to each other ratios which are
constant throughout the motion. It follows also that the values of
the co-ordinates 6, ¢, &c. repeat at a constant interval, viz. the
period of the trigonometrical expression in the one column pre-
served. Referring to Vol. 1. we see that the characteristics of a
principal oscillation are satisfied.

54. The system being referred to any co-ordinates 6, ¢, &c. it
may be required to find how 1t should be disturbed from its position
of equilibrium that it may describe any proposed principal oscilla-
tion. We see that the system must be so displaced that its co-
ordinates 6, ¢, &c. have the ratios of the minors of any row of the
determinantal equation. It is also necessary that the initial
velocities ¢, ¢, &c. have the same ratio. These conditions are
necessary and sufficient.

65, Putting this into algebraical language, we say that when a system is per-
forming & principal oscillation of the type sin (p,¢t+a,), then

o __¢
: Lu(p?) L (pr?)

We also infer from these equations that throughout the motion 6”= —p,%),
¢"'=-p', d&e. :

36. Principal Co-ordinates. It may be required to find formule of transforma-
tion by which we may change any co-ordinates 6, ¢, dc. into principal co-ordinates,
Aoccording to the definitions laid down in Vol. 1. a system is referred to principal
co-ordinates £, 9, &c. when the vis viva 27 and the force function U are expressed
in the forms 2T=§+ 9%+ §"+...

2(U- Up) =2+ Cogn®+0g98% + }. :

=&ec. =L, sin (p,t +ay).

3—2
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Lagrange's equations then take the form §” - ¢,,¢ =0, %" — ¢, =0, &e., 80 that the
whole motion is given by {=E sin (p,t + a,), #=F sin (p4¢ + a,), &c., where E, F, &c.
are the constants of integration and p,3= - ¢,, pf= — ¢y, &o.

When the initial conditions are such that all the constants E, F, &e. are zero
except one the system is said to be performing a principal oscillation. If then we
write z=uin(p,t+*). y=sin (p,t +a,), z will be a maultiple of {, y a multiple of »,
and so on. The expressions for 8, ¢, &o. given in Art. 58, now reduce to

0=LyIn (7)) 2+ LyIyy (ps) y + ...
¢=L,I (p?) 2+ Lylis (pN y + ...

These formuls will enable us to change any co-ordinates 6, ¢, &c. into others
z, ¥, &c. which make T’ and U assume the forms
2T =a,,z%+ apy* + ...
2(U-Up=cyz®+cyy®+...) "
The n constants L,, L,, &o. are arbitrary multipliers of z, y, &c., and may, if we
please, be so chosen as to make a,;, ay, &o. each equal to unity.

On Lagrange's Determinant.

57. On examining Lagrange’s method of finding the oscillations
of a system we see that the whole process depends on the solution

.of a certain determinantal equation. Even the stability or in-

stability of the equilibrium depends on the nature of its roots. If
this equation can be solved, the character of the motion and the
periods of oscillation (if the motion be oscillatory) are immediately
apparent. If the equation cannot be solved, we may expand the
determinant and discuss its roots by the methods given in the
theory of equations. But without expanding the determinant we
may sometimes accomplish the same purpose by the following
theorem. We shall begin with the determinant in its simplest

form ‘as it is obtained in Vol. 1. Chap. 1X.; we shall then consider . -

the modifications introduced by bordering it with any quantities.

58. Separation of Roots. Let the determinantal equation
be written in the form *
A=| 4,p*+C,, A,p'+C,, &c. |=0.

A4,p'+0,, A,p'+0C,, &
&e. &e.

* The proposition that the roots of Lagrange’s determinant when writien in
this general form are all real is due to Sir W. Thomson, It is the extension of a
corresponding theorem for that particular form of the equation which occurs when
the vis viva is expressed as the sum of the squares of the velocities of the co-or-
dinates. Several proofs of this latter theorem will be found in Lesson VI. of
Dr Salmon’s Higher Algebra. The simplest of these is the one given by Dr Salmon
himself. He also proves that the roots are separated by those of the leading
minors. The proof in the text is an extension of his line of argument to Lagrange’s
determinant in its general form. Another line of argument is indicated in the
examples in Art, 71.
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Let us form from this determinant a minor by erasing the first row
and the first column. We may then form from this minor a second
minor, and so on. Thus we have a series of functions of p* whose
degrees regularly diminish from the nth to the first. Let us call
the successive determinants thus formed A, A, A,, &c. The de-
terminant A is not altered if we border it with a column of zeros
on the right-hand side and a row of zeros at the bottom, provided
we put unity in the vacant corner. We may therefore consider
that A =1.

By a theorem in determinants, if I, I, &. be the minors

110 1)
of the several constituents of A, we have A A=1,1,—~1} and
we notice that J,,=A,. Let us suppose p' to increase gradually
from p*=— @ to p* =+, then when p” passes through a value
which makes A,=0 we see that A and A, must have opposite
signs. The same argument applies to every one of the series
A, A, A, &c., whenever any one of them vanishes the deter-

minants on each side have opposite signs*.

Using these determinants like Sturm’s functions we see that
a variation of sign can be lost or gained only at one end of the
series. It can be lost at the end A only when »* passes through
a root of the equation A =0, and it will be regained again as p*
passes through the next root in order of magnitude, unless a root
of the equation A, = 0 lies between these two. -

If then we can prove that n variations of sign are lost as p*
passes from p*=—o0 to p'=+ oo it is clear that the equation
A =0 must have n real roots and these roots will be separated by
the roots of the equation A, = 0.

Now the coefficient of the highest power of p* in the deter-
minant A is the discriminant of 7 and is therefore positive. The

* In this reasoning we have for the sake of brevity omitted the case in which
two or more successive determinants in the series A, A;, A; &oc. vanish for the
same value of p3. But this omission is of no real importance, for we may change
these determinants into others whose constituents are slightly different from those
of the given determinants but are such that no successive two of the series have a
common root. In the limit, therefore, when these arbitrary changes of the consti-
tuents are indefinitely small, the roots of the series of determinants will still be real
and the roots of each will separate, or coincide with, the roots of the next before it
in the series. :

To show that these changes are possible, let A, A), A; be any three consecutive
members of the series. Let us suppose that A, does not vanish while the two mem-
bers (and perhaps others) just before it are zero. Then from the equation in the
text, we have I;,=0. Let us add to each of the constituents of which I,, is the
_minor the small quantity a. The determinant A, is unaltered and remains equal
to zero. The determinant A undergoes a slight alteration, 8o that in its new form
the equation just quoted becomes AA,=-a?A,2. Thus A is no longer zero. In
this way whenever any two consecutive members of the series of determinants
vanish, one may be rendered finite. ’
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coefficient of the highest power of p*in A, is the discriminant of
T after @ has been put zero, and this also is positive. Thus the
coefficients of the highest powers of p' in every one of the de-
terminants A, A, A,, &c. are positive. If then we substitute —o
for p', these determinants are alternately positive and negative, if
we substitute + oo for p* the determinants are all positive. It
follows that n variations of sign are lost as p* passes from p*=~—
top'=+w.

Summing up we see that the roots of each determinant of the
series A, A,, A,, &c. are all real and the roots of each separate or
lie between the roots of the determinant next before it in the series.

59. Resuming our line of argument we see that as p* increases
from p*=— o to p’=+ oc a variation of sign in the series A, A, &c.
is lost when p* passes through a root of A =0, and once lost this
variation cannot be rega.ined. It immediately follows that as p*
passes from p*=a to p'=p if x variations Jsign are lost there
are exactly x roots of the equation A = O between these lsmats.

60. It will be noticed that in this line of argument no as-

sumption has been made about the functions
T=%4,0"+4,0¢+34, 4"+ }
U-U,=4C,F+C,00+3C. " +....... !

except that the successive discriminants of the former are all
positive. This may be expressed by saiing that 7' is a one-signed
positive function, i.e. a function which keeps the positive sign for
all values of the variables and never vanishes except when all the
variables are zero. That the vis viva is a one-signed positive
function is of course .evident. The necessary and sufficient con-
ditions that a quadric function should be one-signed,are given in
Williamson’s Differential Calculus and need not be llépeated here.
They may be briefly summed up by saying that the successive
discriminants have all the same sign.

'61. Equal Roots. Since the roots of any one of the leading
minors 1, I, &c. sega.rate the roots of Lagrange’s determinant,
it follows that when the latter has » roots each equal to p,, each
of the former must have r—1 roots each equal to p,. For the
same reason any leading second minor such as A, must have r — 2
roots each equal to p,.

Consider next any other minor of the determinant. By proper
changes of rows and columns we may represent this by I,,. Since
AA, =1, I ~172 it follows that /, must also have »—1 roots
equal to p,.

On the whole we conclude that if Lagrange's determinant have
r equal roots, then every first minor has r —1 roots equal to each of

" these, In the same way it follows from this, that every second

manor has r— 2 roots equal to each of these, and so on.
G B a AFd T 1904, pf, 53 0 41-
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- 62, This theorem will often enable us to detect the presence of equal roots in
Lagrange’s determinant. We equate any minor to zero and thus obtain an
equation to find p?, which is sometimes of a very simple form.

Suppose for example the system had two po-ordinates, so that

2T=A,07+ 24,0 ¢ + 49"
2(U-Uy)=Cp03+2C0¢+ Cop® )°
If we form Lagrange’s determinant, we see that the minors cannot be zero unless
CyyfAyy=CygfAd;3=Cpl Ao, each of these ratios being equal to —p*. Unless there-
fore these conditions be satisfied there cannot be two equal roots.

68. The equation used in solid geometry to determine the lengths of the axes
of a conicoid is an equation of Lagrange's form. As a consequence of this theorem,
the usual conditions for a surface of revalution follow at once by equntmg each of
the minors to zero,

64. The Bordered Determinant. Let us now border Lagrange’s determinant
with any arbitrary quantities f, g, k, &c., so that we obtain the determinantal

equation .
- A=|4;,p+Cy, App®+Cy... f=0.
A13p*+Cpyy App®+Cys... 9

....................................

I g 0

Regarding this as a function of p? we see that its degree is one less than that of A.
We shall now consider how the roots of this equation are connected with those of
Lagrange’s,

If we remove thé zero in the eorner of A’ and write ap?+ ¢ in its place, where a
and ¢ are any quantities however small, we obtain snother equation which is of
Lagrange’s form but one degree higher than A, The expression for 27' from which
this new equation is derived is the same as the former with the addition of the
term az® where z is some new variable. If then a be positive, we may apply the
theorem proved in Art. 58 to this new determinant. Call this new determinant D',
then the roots of D’ are'all real and are separated by those of the first minor of any
constituent in the leading diagonal. But the determinant A is the minor of the
last constituent in that diagonal. The roots of D’ are therefore all real and are
separated by those of A, If we put a and ¢ both infinitely small, two roots of
the equation D’=0 are each infinite, and the other roots may be made to ap-
proximate as closely as we please to those of A’=0. Hence we infer that whatever
the quantities f, g, dc. may be, the roots of the determinantal equation A'=0Q are
real and separate or lie between those of A=0.

65, The original determinant A has n columns and n rows. The determinant
A’ has been derived from A by bordering it with n arbitrary quantities forming a
new column and a new row with zero in the corner. In the same way we may
border the determinant A’ with a new set of n arbitrary quantities f’, g', &e., filling
up the vacant spaces near the corner with zeros. Thus we obtain a new deter-
minant with four zeros in the corner, which we may call A”. This determinant is
of one degree less than A’ and its roots are all real and separate those of A’

66. Lastly let us form the series of n+1 determinants A, &', A", &e., termi-
nating with a constant. Each determinant is derived from the one before by
bordering it with n arbitrary quantities with zeros near the corner, so that the
determinants are all symmetrical. Proceeding as in Art, 64, we may regard this
set of determinants as the limiting cases of other determinants which are all of
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Lagrange’s form, but of degrees successively higher than A. The last of these,
being in the limit a constant, will have all its roots infinitely great. Prefixing to
this second set of determinants the set formed (as described in Art. 58) by cutting
oft rows and columns, we have a complete series of determinants separated into
two sets by the determinant A. They begin with unity and terminate with a deter-
minant whose roots (in the limit) are all infinitely large. It follows by the theorem in
Art. 58 that in passing from p*=a to p*=8 no varistion of sign can be lost in the
complete series because no root of the last determinant can lie between the finite
quantities ¢ and . But if x roots of the determinant A lie between these limits,
« variations of sign must be lost in the first set of determinants. Hence as many
variations of sign are gained in the second set of determinants as are lost in the
first set. Summing up we infer that as p* passes from p¥=a to p*=4, if « varia-
tions of sign are gained in the series A, A', A", &o. there are ezactly x roots of the
equation A=0 between these limits.

67. Ex. 1. In the theorem of Art. 64 show without putting a=0 that the
roots of A’ separate or lie between those of A,

Ex. 2. In the theorem of Art. 66 show that if variations of sign are lost as p?
Ppasses from p*=a to p3=4, then a is greater than g.

Ex. 8. If the system be referred to principal co-ordinates, show that the deter-
minantal equations A'=0, A”=0 may be written in the form

e s f ¢ =0,

4,9*+ 0y + Appy+ Gn+ T
Uy Lo gk - g o,
@GP+ ) (4P 7 Og) | (et + C) (AP + C) T
68. Invariants of the System. Iu order to determine the values of p* it will
often be necessary to expand the determinant. When there are only a few co-
ordinates this can be done without difficulty. In other cases we may use Taylor's
theorem., Let A be the discriminant of T' and let II represent the operation
n=0na-g-£+cnd—%’+0”afi— +
Then Lagrange’s determinant becomes when expanded
AP+ () gt + T () T .. =0,

If A’ be the diseriminant of U and II’ represent the operation II when the letters
AandOuemtemhsneed.wemywntetheequahonmthetorm

A'+1II' (A)p*+ 11 (A’) =0.
‘When there are only three co-ordinates we ma.y adopt the notation used in the

»chaptat on Invariants in Dr Salmon’s Conics.

69. It is sometimes convenient to change the co-ordinates from 6, ¢, &o. to
others z, y, &c. connected by linear relations, Let these be
O=latly+lz+ ...
p=mx+my+mz+ ... }
&e, =&e.
In whatever manner thig is done it is clear that the equation giving the times of
oscillation must be the same. The ratios of the coefficients of the several powers of

p® are therefore invariable. Let u be the determinant of transformation, i.e. the -

determinant whose rows are the coefficients of z, y, 2, &c. in the equations of
transformation just written down. Then by a known theorem in determinants the
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discriminant A is changed into u?A. Hence all the other coefficients are altered in
the same ratio. The coefficients A, II (A), &o. are therefore called the invariants of
the system. The sign of each of these, and the ratio of any two, are unaltered by any
transformation of co-ordinates. -

70. Ex.1, If a system be in equilibrium, show that the equilibrium will be
stable if —II(A), I*(A), —II*(A), &o. be all positive.

‘We notice (1) that A is necessarily positive (2) since the roots of Lagrange’s
equation are all real, these are the conditions given by Descartes’ theorem that the
roots should be all positive.

Ex.2. The same dynamical system can oscillate about the same position of
equilibrium under two different sets of forces. If p,, p, &o., 0;, 0y, &6. be the
periods of oscillation when the two sets act separately, R,, R, &c. the periods when
they aot together, prove that 2p,+2;_211p

This follows from the fact that IT (A) contains C,,, &o. only in their first powers,

Ex. 8. Two different systems of bodies when acted on by the same set of forces
oscillate in periods p,, py, &c., 0,, 75, &0. If R, Ry, &o. be the periods when they
are both acted on by this set of forces, prove that Zp?+ Z¢%=2R3,

71. Ex. 1. Let T and U be given in their simplest forms, i,e. referred to
principal co-ordinates, and let these be
3T =a,0%+ agp®+ ...
2(U-Up= 6 +cgd® + ...
It is required to transform these to general co-ordinates by using the formuls of
Art. 69, and thence to construct the general form of Lagrange’s determinant. For
the sake of brevity let B,=ap’+c¢;, By=agp'+¢,;, &c., let there be x of these.
Also let I(l,), I(L), &o.be the minorsof I, Iy, &e. in the determinant of transforma-
tion, called 4 in Art. 69. Then show (1) that Lagrange’s determinant is equal to
M3B,B, ... Bx, (2) that the minor of the leading constituent of Lagrange’s determi-
nant is equal to {I(1,)}3B;B; ... Bx +{I(m))}*B,B; ... Bx + ..., (8) that Lagrange’s
determinant when bordered with f, g, h, &c. with zero in the vacant corner is

equal to
-(foh .. ’B,B, v Be =| Lyl ... " ByBy ... B - ...
mmgmy .. fah.
"1"'@": ) Ngny ...

Ex, 2. Deduce from the analytical results of the last article that if 7’ and U
be any expressions which can be derived by a real linear transformation from the
forms 2T=a,0*+ a9 + ...

2(U=-Up)=,0%+ cgp* + ...
where the a’s and the ¢’s have any signs, then (1) the roots of Lagrange’s determinant
are all real, (2) that they will be separated by those of any leading minor, and (8)
that they will also be separated by those of the bordered determinant.

Energy of an Oscillating System.

72. A system 13 referred to its principal co-ordinates, it 18
required to find its kinetic and potential energies.
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Let the co-ordinates be £,, &c. 0 that the vis viva 2 7'and force

funetion U are given by

2T =£"+7"+... }

2(U-0y)= _.px.F - p:’l' T eee
Then by Lagrange’s equations Art. 56, we have
E=Esin(p,t+a,), n = Fsin (P:t+at)! &ec.
Substituting these in the expressions for I'and U just written down,
we find
2T =p? E* cos* (pt+a,) +p,' F* cos’ (pt +a,) + &c.,
2(U,— U)=p’Esin*(pt+a)+p, F" sin* (pt +a,) + &c.

Here T is the kinetic energy of the system and when the
position of equilibrium is the position of reference, U, — U is the
.potential energy.

From these expressions we infer that the whole energy of a
system oscillating about a position of equiltbrium s the sum of the
energies of its principal oscillations.

. 78, Mean kinetic and Potential energies. The mean
value of E*cos’ (pt+ a) with regard to time from ¢=0 to t=1¢is

? f * cos® (pt + a) dt, which after integration reduces to $£* when ¢
0

is very great. The mean value of E”sin® (pt +a) is of course the
same. We therefore infer that the mean kinetic energy of a system
oscillating about a position of equilibrium ts equal to the mean
potential energy, the mean beng taken for a long period and the
‘position of equilibrium being the position of reference. Thus the
energy of the system is on the whole equally distributed into
kinetic and potential energies. Sometimes one has an excess and
sometimes the other, but in any long time their shares are equal.

74, Energy of any system. To find the energy of a system
oscillating about a position of equilibrium referred to anyco-ordinates.
Let the general co-ordinates be 6, ¢, &c. so that the kinetic
energy T and the potential energy U,— U are given by
2T=A4,0"+ 24,0¢ +... }
2(U~-U,)=C,F+2C,0¢+...
‘We have just proved that the whole energy is the sum of the
energies of the principal oscillations., Let us therefore find the
whole energy of that principal oscillation whose type (Art. 55) is

0 _o o _
E_Fl—&c.—sm (pt + a,).

where M =LI, (p) N,=LI,(p} &ec.
Substituting in the expression for T’ we find
9T =[A, M?+24 MN, +...]p sin* (pt +a).
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Let us indicate by the symbol T the result of substituting for
&'¢, &c. in T the coefficients M, N, &c. of the column in Art. 53
which represents the principal oscillation whose typeissin (pt + a,).
Then T, will indicate the result of substituting M,, N,, &c. and so

on. We see therefore that the whole kinetic energy of the system is
T,p cos* (pyt + ) + Ty, cos* (pf +a,) + &

If U, U, &c. indicate the results of the same substitutions in
U- 0;, we find that the potential energy of the system is

== UISin’ (plt+a,) - U: sin’ (ptt+¢s) —&e.
If we compare the expressions for the kinetic and potential
energies of a principal oscillation obtained in Art. 72, we see that

the coefficients of the trigonometrical terms are equal. We there-
fore infer that

Tp'+ U =0, T,p}+ U,=0,&.=0."
Adding together the two expressions for the kinetic and poten-
tial energies we find that the whole energy ¢s represented by

Tp'+T,pl+.conee

75. We may also deduce the equation Tip*+ U, =0 from the
equations given in Art. 50 to find M, N, &c. If we multiply these
by M, N, &c. respectively (omitting the two last) and add the
results, we obviously have

(A M*+ 24 MN+...)p'+ (C M +2C,MN +...) =0,
which is the result to be proved when written at length.

Effect of changes in the system.

76. JEffect of an increase of inertia. Supposing the system to be osecillating
about its position of equilibrium under a given set of forces, it is required to find
the effect of inoreasing the inertia of any part of the system without altering the
forces,

Let AT =A4,,0%+24,,0¢'+ } @

(U= U= Cpl+ 20, 04 ... § 7 ommmmmsssmmsessss
where the 4’s and G’s are all given by the conditions of the question, Buppose we
add on to 27 the quantity

B (0'+b¢' + &e.)?,

it is required to find the change in the periods of oscillation.
Let us change the co-ordinate 8 by writing 6, =0+ bg + &e., then eliminating 6
we find that T and U take the forms
2T =(dyy + ) 6,2+ 24',58"1¢' + } )

2 (U-TUy= 420 g4 .§ s .
where 4, &c., C';3 &ec. are the coefficients as altered by the change of variables,
The periods are now given by the determinant

(g2 + Oy g+ Oy .| =0,
A'3p?+ Oy &o.
If we put x=0, this equation gives the periods before the increase of inertia.
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We write this in the form f(p?)=0. Let I be the minor of the leading constituent
in the determinant. Then the equation to find the altered periods is

u=f (") +pp*I=0, .
‘We notioe that I is independent of u 8o that x enters into the equation only in the
first power.

Let the roots of f (p%)=0 be p,3, p,? &e., and the roots of I=0 be ¢,3, ¢, &e.,
both series being arranged in descending order of magnitude. The roots of I=0
separate those of f( p%) =0 by Art. 58 hence the terms of the series p,3, ¢,%, p,*, ¢5%, &ec.
are arranged in descending order. The case in which some of these quantities are
equal may be regarded as the limit of the case in which they are all different,
however small those differences may be.

In order to discover how the roots of the equation u=0 have been aliered by the
introduction of x, we put p? in succession equal o p,*, p,®, &c. We see that u takes
the sign of I and is therefore alternately positive and negative, beginning with a
positive value. Thus all the roots have been decreased*®.

But putting p® in succession equal ta g¢,*, g4%, &o., we see that u takes the sign of
f (p?) which is independent of u. These signs are therefore the same as before the
introduction of u. Thus the roots continue to be separated by the roots of I =0.

Now I is the minor of the leading constituent in Lagrange’s determinant, that is
I=0 is the equation which gives the periods when we introduce into the system
the constraint ,=0. Henoe we infer that though all the values of p* are decreased
by an increase u to the inertia of any part of the system, yet no increase however great
can so reduce them that any one passes the corresponding value obtained by absolutely
Jizing the part whose inertia was increased.

It immediately follows that if any of the periods of the system are common to
the system before and after fixing the part under consideration, those periods will
not be altered by the addition to the inertia.

77. Ex.’l. BSuppose all the periods of oscillation of a system to be known and
let them be indicated as usual by the values of p. Let these be p,, p,, &c. Suppose
all the periods to be also known when some particular mode of motion is
prevented and let the corresponding values of p be g, g5, &. When the constraint
is partly loosened, i.e. when the system is allowed to move in the particular manner
formerly restricted but with more inertia than when free, show that the periods are
given by the equation (p*-p,%) (0* - p,") &o.+ Mp* (p* - ¢,%) (¢* - g,") &0.=0, where
M is a quantity proportional to the mass added on to increase the inertia.

Ex. 3. Let the system be referred to any co-ordinates 6, ¢, &o., and let the inertia
be increased by the addition of u (a# +b¢'+...)%. Let A be the diseriminant of T'
before the addition to the inertia, and A’ the same discriminant when bordered in
the usual symmetrical manner by a, b, &o. with zero in the corner. Prove that the

’
quantity M in Ex. (1) is given by M= -,.% .

78. Rffect of introducing a constraint. Supposing a system to be oscillating
about a position of equilibrium with any number of independent co-ordinates 6, ¢, &e.,
it is required to find the effect on the periods of introducing a geometrical relation
between the co-ordinates.

* Lord Rayleigh shows in his Theory of Sound, Vol. 1., Art. 88, that any indefinitely
small increment of mass is attended by a prolongation of all the natural periods or
at any rate that no period is diminished. Thence by integration a similar theorem
is true for any finite increment.
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TLet this geometrical relation be f (0, ¢,...)=0, then sinee the system is in
equilibrium for displacements represented by any values of 8, ¢, &o., the coefficients
of the first powers of 8, ¢, &o. in the expansion of U will be zero. We may therefore
(Art. 51) write this equation in the form f (6, ¢...)=af+ b+ ...=0.

‘We now use the method of indeterminate multipliers as already explained in
Art. 48. We write down the equations of oscillation as if there were no geometrical
constraint and then add to their right-hand sides \df/df and Adf/d¢, &c. In our
case these additions are simply Aa and Ab, &o. The new determinant found by
eliminating 6, ¢, &o. and the additional unknown quantity A will be the same as
Lagrange’s determinant bordered by a, b, &c. We thus have

Ay p?+Cyy, A1ap?+ Cg......a|=0.
&o. &e. b

) a N b 0 .
This equation will give the periods after introducing the geometrical relation
between the formerly independent co-ordinates of the system. '

The properties of this determinant have been discussed in Art. 64. We see that
the system will have one principal oscillation fewer than it had before, and the
periods of these principal osecillations will lie between or separate the periods of its
former oscillations.

79. Ex. 1, Two independent systems whose principal co-ordinates are re-
spectively (6, ¢) and (£, ») vibrate in different periods. If they are oonnected by
introducing a geometrical relation which may be represented by ad+ b¢ + at +S9=0,
show that the periods of the connected system are given by

at b a®
Fopr tpp T P
where (p,, ps) (3, ;) are the values of p for the two disconnected systems.

Ex. 2. Two independent systems referred to any co-ordinates (0, ¢) (£, ) are
connected together so that the co-ordinates ¢ and ¢ are made equal. If the letters
have the meaning given in Art. 48 unaccented letters referring to the first and
acoented letters to the second, show that the periods are given by .
(41,9 +Cp) | 4 p*+Cy, A'pp?+C'y l + AP+ C) | 42+ Cpny Ay p*+

A, P2+ Cy App’+0y l‘m?""cw App*+Cql

Composition and Analysis of Oscillations.

80. The position of a system being defined by several co-
ordinates z,y, &c. the oscillations of that system will be generally
given by equations of the form

@ =N, sin(pt + v,).+ N, sin (pt + »,) + &e.
with similar expressions for y, z, &c.

In order to obtain a clear insight into the changes of the motion
indicated by these series it will sometimes be necessary to combine
these separate oscillations or to find some simple geometrical
methods of representing these terms which may enable us to realize
the nature of the motion.

To obtain a geometrical representation we use a representative
point whose co-ordinates whether Cartesian or polar are made to
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depend in some ¢onvenient manner on the co-ordinates z, y,z, &c.
The motion of this representative point will then exhibit to the
eye the motion of the system.

, 81. Commensurable Periods. Suppose for example we
wish to trace a motion represented by 2= Nsin pt+ N sin 2pt,
the coefficients being equal in magnitude. Choosing Cartesian
co-ordinates we may let the abacissa of a point P represent on any
scale the time elapsed since some epoch, and let the ordinate
represent the value of z. There will be no difficulty in tracing the
two curves z, = N sin pt and o, = Nsin 2pt. Let these be the two
dotted lines. We obtain the required curve by adding the ordi-

?ates corresponding to each abscissa. "Let this be the continuous
ine, ‘

In the figure the axis of the abscisse is not drawn. It clearly
joins the two extreme points on the right and left-hand sides.

We see from a simple inspection of the figure that the motion
consists of a violent oscillation to each side of the mean position
followed by a very slight one and so on alternately. This figure
resembles that used in Astronomy to trace the changes in the
magnitude of the equation of time throughout the year.

83. Ex. 1. Show that the motion represented by z= N sin pt + Nsin 3pt consists
of two large oscillations to one side of the mean position followed by two equally large
ones to the other side, and so on continualy.

Ex, 2. Trace the motion represented by z= N gin 3pt + N sin 8p¢, and point out
the differense between the two parts of the large osecillation,

88, When we combine together an infinite number of commensurable oscillations
we obtain some interesting results by the use of Fourier’s theorem, Thus, if we
examine the motion indicated by the series y=N sin pt - §N sin 2pt + } N sin 3pt — &e.
it is evident that the representative point has an oscillatory motion whose period is
the same as that of the first term. This series is shown in treatises on the Integral
Calculus to be the expansion according to Fourier’s theorem of }Npt between the
limits pt= - to pt=w. Returning to the motion indicated by the series, we see
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that y increases uniformly from — }xN to }»N during the time Ix/p, and then sud-
denly or rapidly changes to —}xN, to repeat again its gradnal inerease during the
next oscillation. ’

As the series is convergent it will usually be sufficient to consider the motion as
represented by a limited number of terms, The expression for y is thus rendered
petfeotly continuous.

84. Ex. Examine the motion represented by the series

A y =N sin pt+ N sin 3pt + 1N sin 5pt + &o.,
show that the representative point rapidly changes from one side of its mean position
to the other, remaiming stationary for half the period of the first term in each of
these extreme positions. '

85. Analysis of Oscillations. When the position of a
system is indicated by the sum of a number of oscillatory terms
whose periods are commensurable it is clear that the motion con-
tinually repeats itself at a constant interval. This interval is the
least common multiple of the periods of the several oscillatory
terms. - Thus this compound oscillation resembles a princi
oscillation at least in one important feature. See Art. 53. Such
a compound oscillation might even be used as a new kind of
simple or principal oscillation by the help of which more compli-
cated oscillations of the system might be analyzed.

We are thus led to perceive that the single trigonometrical
oscillation is not the only one by which we may analyze a compli-
cated motion. We may sometimes find it advantageous to combine
many of these oscillations into larger units to obtain any clear
idea of the motion. This may even prove to be a necessity when
the number of coexistent oscillations is infinite. -

86. Analysis by Waves. When the surface of still water
is disturbed by throwing a stone into it, or when a piano string
or a drum head is struck at some one point, the parts of the system
remote from the impact do not begin to move at once, but appear
to- wait until the effects of the impulse has reached them. In
other words, the motion appears to diverge from the centre of
disturbance in the form of waves. These waves may be taken as
new simple oscillations. The convenience of this new elementary
motion is evident, for if several disturbances are given to different
parts of the medium each will produce a wave and the aetual
motion at any point is the resultant of all these waves.

87. The following illustration will put this theory in a clearer light. Let 40B
be & tight string, such as a piano string, whose extremities 4 and B are fixed and
whose length 4 B=2xl, and let this string be vibrating transversely about its mean
position AB. -8ince the deviation of each particle from its position of equilibrium
will require a separate co-ordinate to express its value, it is clear that the string has
an infinite number of co-ordinates. Hence, by Lagrange’s rule, the deviation of each
particle will be expressed by an infinite number of trigonometrical terms. Let y re-
present the deviation from the straight line AB of the particle whose distance from
the middle point O is x. Let the part of the string, viz. EOF, bounded by z= ~ ¢
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and 2= + ¢ be plucked aside and arranged s0 as to form the curve y=f{(z), the rest of
the string being undisturbed, and let the whole string start from rest. By Fourier's
theorem we may represent this initial state of the string by an equation which may
sometimes be written in the form '

y=3 {N,ﬁn‘{»+N,ain2;+N,lin8¥-+&o.z ........... ceereeed(D).
It will be shown in another chapter that the motion of the string at the time ¢ is
given by y=231v,sinlfooape+1v.-in2§oosepc+ao.¥ ................... 2),

where p is a constant which depends on the nature of the string.

Since the particles of the string are oscillating about their positions of equilibrium,
their motions may be resolved into Lagrangian oscillations which of course are re-
presented by the several terms of this series. Taking any one periodical ferm by
itself (say the one containing cos xpt) we see that all the characteristics of a principal
oscillation are satisfied. Thus the displacement of any one particle (defined by z=z,)
bears a ratio to the displacement of any other (defined by z=z,) which is equal to
sin % / sin -%’ , and is therefore constant throughout the motion, Art. 68, In
other words the phases of the oscillations of all the particles are the same,

V4 y E, By ’

But if we recur to the expression (2) and examine how the string appears to
move, we find something very different. If we trace the curve

l
we find it represented in the accompanying figure, We have y=0 for all values of
exoept those which lie between z=23ilwr+e where i is any integer; between these
limits we have y=}f(z). Since 2=l is the length of the string, z is practically limited
to lie between O4 = — xl and OB=xl. This portion is represented by the thick line,
while the dotted line exhibits the form of the curve for all values of z and should of
course be continued to infinity on both the right and left-hand sides.

Comparing equations (1) and (3) we see that the form of the siring at the time
¢=0 is represented by the portion of this curve between 4 and B, the ordinates being
doubled. To discover the motion at the time ¢, we write the equation (2) in the form

y=ZN,sin« (‘{ﬂn) +ZNcsinx (§-p¢) .

The first of these series may be derived from (8) by writing z + ipt for . This may
be represented by moving the curve towards the left a distance equal to Ipt, the
origin O being fixed. Thus the disturbance EF travels towards the end 4 of the
string and passes off, & new disturbance E'F" entering the string at B. The second
series may be representied by moving an equal and similar curve to the right of O
through a distance equal to Ipt. The sum of the ordinates of these two curves re-
presents the displacement at the time ¢ of that particle of the string whose position
in equilibrium is the foot of the ordinate.

Thus the original single disturbance has separated into two disturbances, one of
‘which travels to the right and the other to the left. Each travels without change
of form and with uniform velocity. This wave-like motion may be treated as a

— e —
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simple motion, by means of which we may construct other more complicated wave-
motions. In this new simple oscillation all the particles have the same period, but
they are not all in the same phase. One particle is at the crest of the wave at the
same instant that another is in the hollow.

The case in which the particles of the string have any initial velocities may be
treated in the same way. If the elements bounded by £=- ¢ and x=e¢ have an initial
velocity represented by f(t), the rest of the string being undisturbed, we obtain y by
simply writing dy/dt for y in equation (1) and integrating the result. If the elements
be both displaced from their initial position and have initial velocities, we merely
add the two separate values of .

88. Composition of oscillations of nearly equal periods.
T'race the motion represented by x =N, sin(pt +»,) + N sin(qt +»,),
where N, and N, are both positive and p and q are nearly equal.

In the first place, consider any time at which pf+», and ¢t +»,
differ from each other by an even multiple of . At this instant
the two trigonometrical terms have the same sign, and, since p and ¢
are nearly equal, they will increase and decrease together for several
oscillations, how many- will depend on the nearness of p and ¢ to
each other. The value of # will therefore vary between the limits
+ (N,+N,). Next consider any time at which p¢ + v, and ¢t +,
differ by an odd multiple of . The two trigonometrical terms
have opposite signs and will continue to bave opposite signs for
several oscillations. The value of  will therefore vary between
the limits + (N, —N,). We see that the motion of that part of
the dynamical system which depends on the co-ordinate z under-
goes a periodic cﬁange of character. At one time, this part of the
system is oscillating with an arc N, + N, after an interval equal
to m/(p —q), the arc of oscillation is N,—N,. If N, and N, are
nearly equal, this last may be so small, that the motion is invisible
to the eye. Thus there will be alternate periods of comparative
activity and rest, This alternation is sometimes called beats.

89. 'Transference of Oscillations. When a system has
two degrees of freedom, two co-ordinates = and y will be necessary
to determine its position in space. Suppose the oscillation of z
to be given by exactly the same expression as before, while that
of y is the same with the opposite sign given to N,. Let us also
suppose that N, and N, are nearly equal. Each of these co-
ordinates will have alterpate periods of comparative rest and
comparative activity. But the period of rest in one will syn-
chronise with the period of activity in the other co-ordinate. If
now the visible motion of one part of the system depend on «
and the visible motion of another on y, these parts will be in
alternate rest and oscillation. Thus there will appear to be a
transference of energy from one part of the system to another and
back again,

R.D. IL : 4
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90. This peculiarity of the resultant of two oscillations of nearly equal periods
renders it important to determine when two roots of Lagrange’s determinant are
nearly equal. This point however has been practically discusséd in Art. 63. It is
there shown that when two roots are equal every first minor must be zero. If two
roots are nearly equal, it follows from the principle of continuity that every minor
is nearly equal to zero. By equating to zero some minor whose roots may be found
as in Art. 62, we obtain some quantities which must be nearly equal to the roots
sought, if any such exist. To settle this last point we substitute these quantities
in turn in Lagrange’s determinant and in the other minors, If all these nearly
vanish for any one of these substitutions there will be nearly equal roots in
Lagrange’s determinant and these will be nearly equal to the quantity substituted.

91. Composition of Oscillations of very unequal periods.
Trace the motion represented by x =N, sin(pt+v,)+ N, sin(qt +»,)
where N, and N, are both positwe and p 18 small compared with q.

In this case %f-}- v, increases by 27, while pt + v, alters only by

mp/q, so that the second trigonometrical term goes through all
its changes while the first is only very slightly altered. The
system will therefore appear to oscillate about a mean position
determined by the instantaneous value of the first trigonometrical
term. Thus the oscillations will appear to be simply harmonic
with a period 2m/q and an extent of oscillation equal to N,. At
the same time the apparent mean position will travel slowly first to
one side and then to the other of the real mean in the comparatively

long period 2/[p.

92, Resultant Oscillation. We may compound any number of oscillations
represented by the terms of the series
Z=N, sin (pyt +»,) + Ny in (pgt +») + &C...evverernnnrnnnnnnnnene (1)
in the following manner.
Let n be a quantity to be chosen at our convenience, and let p, =n+9;, p,=n+ g5, &e.
Suppose the resultant oscillation to be represented by

z=Rsin (nt+p)........ PRI (2),
‘then we have Rcosp=ZNcos(qt+») : .
Riin p= ZN sin (ge+7)] "7 R «(8),

whence R and p may be found without difficulty.

93. This method of compounding oscillations is of great advantage when their
periods are equal. 1In this case all the p's are equal, and by choosing n=p we have
all the ¢'s equal to zero. We thus replace the series (1) by the simple harmonic
form (2) in which R and p are absolute constants.

If the periods are nearly equal, we can choose n g0 that all the ¢’s are small. The
values of the elements R and p will now vary, but only slowly., The resultant os-
cillation is therefore very nearly a harmonic one. The elements of the resultant
oscillation, being found at any one moment, will be nearly constant for a considerable
time, and their small changes all follow known laws. These laws are determined by
equation (3). 'We may thus still obtain a clearer insight into the changes of the
values of = by examining the gingle term (2) than the series (1).

04. Geometrical Construction. We may represent any oscillation such as
z=Niin (pt+») by & simple geometrical construction which is sometimes useful.
From any origin O draw a straight line 04 whose length shall represent N on any




COMPOSITION OF OSCILLATIONS. 51

scale we please, and let » be the inclination of 04 to a straight line OL fixed in
space. Wemay call OL the axis of reference. With centre O and radius equal to 04
describe a circle, If a particle P, starting from A4, describe this circle with & uniform
angular velocity equal to p it is clear that the distance of P from the axis of reference
is equal to N'sin (pt+»). Thus, by the help of this circle, when the straight line 04
is given, the whole oscillation is determined. 'We may therefore by a straight line
OA represent any harmonic oscillation,

In this manner we may replace the oscillations to be compounded by a series
of straight lines 04,, 04,, &. The circles on 04,, 04,, &c. are to be described by
points P,, P, &c., and the sum of their distances from the axis of reference is the
quantity to be represented by the resultant oscillation. Let us also for the sake
of simplicity, suppose that the periods are all equal, so that the ¢'s in equations (3)
are all zero,

Let OB represent the resultant of 0d,, 04,, &c. found by the ‘‘parallelogram
law,” i.e. found as if 04,, O4,, &c. were forces to be compounded as in statics.
Then by interpretation of equations (3) we see that OB will represent the resultant
oscillation.

We may therefore find the resultant of any number of oscillations in the same co-
ordinate, if of equal periods, by a geometrical construction. Representing each
oscillation by a straight line, the resultant is found by compounding these straight
lines according to the “parallelogram law.”



CHAPTER III

OSCILLATIONS ABOUT A STATE OF MOTION. .

The Energy Test of Stability.

95. Ir has been proved in Vol. 1. that when we know one
first integral of the equations of motion of a system disturbed
- from a position of equilibrium, such as the equation of energy,
we may sometimes from that one integral determine whether the
position of equilibrium is stable or not. Thus when the potential
energy is a minimum in the position of equilibrium, it immediately
follows from the equation of vis viva that the position of equili-
brium is stable. But when the potential energy is not a minimum,
the equation of vis viva alone is not sufficient to determine
whether the equilibrium is stable or unstable, But by taking
into consideration the other equations of motion this position of
equilibrium is proved to be unstable. :
We may apply an “energy test” of stability to a given state
of motion as well as to a given position of equilibrium, but with a
similar limitation. When a certain function derived from such of
the first integrals as we may bappen to know is an absolute mini-
mum or maximum we may be able to prove that the system
cannot depart far from the given state of motion. But when that
function is neither a maximum nor a minimum we only infer that
there is apparently nothing in these equations to restrict the
deviations of the system. To determine this point we must
examine the equations we already have more minutely or we must
discover the remaining equations of motion. This latter part of
the question will therefore be postponed until we discuss the
oscillations about a state of motion. Meantime we shall consider
the “energy test” with a view to determine how far it can be
made to decide the question of stability.

96. Stability of a State of Motion. Let a dynamical
system be in motion in any manner under a conservalive system
of forces, and let E be its energy. Then E is a known function
of the co-ordinates 0, ¢, &c. and their first differential coefficients
&, ¢, &c.: this 13 constant and equal to h for the given motion.

RN
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Suppose that either some or all of the other first integrals of the
equations of motion are also known, let these be
F, (0,0,&c)=C, F, 0,6, d&)=C, dc=4dc
For the purposes of this proposition, let us regard 6 and &, ¢ and
@', &c. as independent variables, except so far as they are connected
by the equations just written down. if E be an absolute mawxi-
mum, or an absolute minvmum, for all varwtions of 0, &, &c. (those
corresponding to the given motion making E constant), the motion s
i)tabli Jor all disturbances which do mot alter the constants C,,
e e

Let as many of the letters as is possible be found from the first
integrals in terms of the rest, and substituted in the expression
for E. Let+, ¥, &c. be these remaining letters, then we have

: E=f, ¥, &, C,, C,, &c.)=h.

Let the system be started in some manner slightly different from
that given, then the constant 4 is altered into &+ 06h. First let &
be a minimum along the given motion, then any change whatever
of the letters 4, ¥, &c. increases E, and it follows that the dis-
turbed motion cannot deviate so far from the given motion that
the change in E becomes greater than k. Similarly, if £ be an
absolute maximum, the same result will follow.

The same argument will apply to any first integral of the
equations of motion, besides the energy integral. If any one of
the functions F), F,, &c., which contains all the letters, be an
absolute maximum or minimum, then the motion is stable for
all displacements which do not alter the constants of the other
integrals used. :

, 97. When the system is disturbed from a position of equilibrium

which is defined, as in Vol. 1., by the vanishing of the co-ordinates
6, ¢, &c., we have

E=}{A 64+ A4.,6¢ +&c.— U,

where A4,, A,,, &c. are all constants, and U is independent of
&, ¢', &c. Here the terms which constitute the kinetic energy,
being necessarily positive and vanishing with &, ¢, &c., are evi-
dently a minimum for all variations of &, ¢', &c. We see, without
the use of any other integrals, that if —U be a minimum for all
variations of 6, ¢, &c., E will be an absolute minimum, and that
therefore the equilibrium is stable.

In what follows a similar result will be obtained when the
system is disturbed from a state of steady motion. It will be
shewn that when a function represented by F— U is a minimum
under certain conditions this state of steady motion is stable
under the same conditions. The function # of course reduces to
zero when the state of motion reduces to a state of rest.

98. To find a steady motion. It often happens that the motion whose
stabilily is in -question is 4 state of steady motion, This generally occurs when
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some of the co-ordinates are absent from the Lagrangian function though present
in the form of velocities. Let us represent by z, y, &c. the co-ordinates which are
absent from the Lagrangian function, and let £, 9, &oc. be the remaining co-ordinates.
Thus the Lagrangian fanction L will be a fanction of ¢, ¢, », v, &e., @, ¢, &c., but
not of z, y, &o. The Lagrangian equations will therefore take the forms

-‘! d—L—‘HJ &o E=u d—sz &o

dtdf dE" " dd " dy ' T
where u, v, &c. are constants introduced by integration. These equations will
eontain ¢, ¢, &, w, ¥, 1", &o., & 2", ¥ y", &c., and do not contain ¢ explicitly.
They may therefore be satisfied by putting 2’ =a, y’'=b, &c., ¢=a, 3=, &c., where
a, b, &o., a, B, &o. are constants to be determined by substituting in the equations,
If ¢ stand for any one of the co-ordinates, it is evident that dT/d0 and dT/d¢' will
both be constants after the substitution is made. Omitting the equations which
contain u, », &c. a8 they do not assist in finding the constants a, b, &o., a, 8, &c.
%‘:-o, %=o, 8O.20.....ovorreressrrseesenneens m,
where L=T+U. Thus we have as many equations as there are co-ordinates §, #,
-&o. directly present (i.e. not merely present as velocities) in the expressions for T'
and U. The quantities a, b, &o. are therefore undetermined except by the initial
conditions, while a, 8, &e. may be found in terms of a, b, &c. by these equations.
These equations may be conveniently remembered by the following rule.

In the Lagrangian function which is the difference between the kinetic and
potential energies, write for all the differential coefficients their assumed comstant
values in the steady motion, viz. x'=a, y=b, &o., =0, 9'=0, &. The Lagrangian
JSunction is now a function of the co-ordinates &, 3, &c. only., Differentiating this
result partially with regard to each of these co-ordinates and equating the results to
zero, we obtain the equations of steady motion.,

99. Stability of a steady motion. To determine if this motion is stable we
use the method indicated in Axt. 96. The equation of energy may be written in the
form E=T-U=h. '

8ince T is not a function of the co-ordinates z, y, &o. the Lagrangian equations
for these co-ordinates lead as before to the integrals dT/de’ =u, dT|dy'=v, &e.,
where u, v, &c, are constants. By the help of these integrals we shall eliminate
', y', &c., and thus obtain E as a function of the other co-ordinates. If E be an
absolute maximum or minimum, this motion is stable for all disturbances which do
not alter the constants «, v, &c. There can be no difficulty in effecting the elimi-
nation in any particular case, but we may perform the process once for all, The
process is a repetition of that called Modification in Vol. 1.

To effect the elimination, let

T=%(zz) 2"+ (z8)2'E + &0. ..ccvvvvvrrnnnnnns cereeeriie (2),
where the coefficients of the accented letters, viz. the quantities in brackets, are
all known functions of ¢, #, &c., but not of z, y, &c. The integrals may then be
written in the form

we have the equations

(z2)d + (ry)y' +...=u~ (@E) ¥ - (an) o - &o.
(zy)z’+(yy)y’+‘;<;=vg wdE - (yq)q’-&c.} et enens (3).
. = &0,

For the sake of brevity, let us call the right-hand sides of these equations - X,
v-Y, &c. Since T is a quadratic function of the accented letters, we may write
it in the form

T=3§ (8)87+ (En)E' +&0. + 42 (u+ X) + 3y (v+ V) + &o,
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If we substitute in the terms after the first &c. the values of ', ¢ given by (3)
we obtain the determinant
110, u+ X, v+Y, &o.
T2 u-X, (22), (zy), &o.
v- Yl (xy)' (.'I!I): &e.

&e. .
where A is the discriminant of T, when ¢, ', &o. have been put zero. If we change
the signs of X, Y, &o., this determinant is unsltered, hence when expanded such
terms as X, vX, &c, cannot oocur. If therefore, we put

Fe=e 1 0 v o ..
u (zz) (zy)...

and expand the first determmant, we hnve as the result of the elimination )
T=F+3But "+ Bigt'n' +.oevevrnvnennanns [T (6),

where the terms after F express some homogeneous quadratic function of ¢, ', &e.

Now T is essentially positive for all values of «/, %', &c. and therefore for such
a8 make u, v, &o. all zero. Hence the quadratic expression By,¢? + &o. is a8 minimum
when ¢, 7/, &e. are zero, If then the function F — U is a minimum for all variations
of & 0, &e., the steady motion given by (1) is stable for all disturbances which do not
alter the momenta u, v, &o.

100. When ¢, o, &o. are put zero, the process indicated by the sucoessive
equations (2), (3), (4), (5) is exactly that described in Vol. 1. as the Hamiltonian
method of forming the reciprocal function of T for the co-ordinates z, y, &c. We
may therefore enunciate the rule in the following manner.

Suppose a steady motion to be given by £ =0, y'=0, &¢., X'=a, y=b, &e¢., so that
the momenta u, v, dc. with regard to x, y, &o. are constants. Form the reciprocal
JSunction of T with regard to X', y', dc., putting zero for each of the letters §, o, &e.
Let F be this reciprocal function, and —U or V be the potential energy. Then if
F -Uor F+V is a minimum for all variations of §, n,-dc. this steady motion is stable
for all disturbances which do not alter the momenta u, v, &c.

‘When the reciprocal function F has been found, we may put the equations (1)
which determine the steady motion into another form. The function F is the
reciprocal of T with regard to &/, ¥, &o., and §, %, &o. are merely other leiters
present during the process of transformation, hence as explained in Vol. 1., we have

?l}f"' -—% with similar equations for u, &c. The equations of steady motion (1)
therefore become d(F- 'U')_0 d(F- U)
@ L TR SR ©)
23 F-T) ._d(F-U) """ ' o
T du VY="a

where F -TU or F+V is the energy expressed as a function of the momenta u, v, de.
instead of X', y', dc., the other accented letters 5', 7, &o, being put equal to zero either
before or after the differentiation.

101. Bpecial case of Motion. If the energy be a function of one only of the
co-ordinates, though it is a function of the differential coefficients of all of them, we
may show conversely that the steady motion will not be stable unless F-U is a
minimum,

Let £ be this single co-ordinate, then following the same notation as before, we
have by vis viva 3 B*+F-U=h.
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Differentialing with regard to ¢, and treating Bu as constant because we shall
neglect the square of ¢, we obtain

B¢ +2 (F U)=0.
To find the oscillation, let ¢ -¢+ P, then by (6) we have

B i+ [ Je=o

where a is to be written for ¢ after differentiation in the quantity in square
brackets. The motion is clearly stable or unstable according as the coefficient of p
is positive or negative, i.e. according as F — U is & minimum or maximum.

Further.information on this subjeet will be found in the author’s Essay on the
Stability of Steady Motion, 1871,

102. Bxamples of stability of motion. Ex. 1. Let us consider the simple
case of & particle describing a circular orbit about a centre of attraction whose ac-
celeration at a distance r is ur™, If 6 be the angle the radius vector r makes with
the axis of z, we have here a steady motion in which /=0 and ¢’ is constant. Also

E= ;,(f=+r=a'*)+“"M

‘We notice that ¢ is absent from this expression, hence by the rule we eliminate
@ also by the integral 12¢’=h, where his the constant ealled u. in Art. 99, We

L prtl
have then E=jkr +§f,+”+1
Putting the remaining accented letters equal to zero according to tha rule, we
dE h?
have in steady mf:hon : G it +urt=0,
. d*E _ 3kt
and sinoe R +pnr*1=p (n 4 8) P+,

this steady motion is stable or unstable according as n+3 is positive or negative
for all disturbances which do not alter the angular momentum of the particle,

Ex. 2. A top, two of whose principal moments at the vertex O are equal, turns
about its vertex under theaction of gravity. If OC be the axis of unequal moment,
and 6, ¢, y the Eulerian angular eo-ordinates of the body referred to a vertical axis
measured upwards, we have (as in the chapter on vis viva, Vol. 1.

2T=A (0" +sin?0y/?) + C(¢' + ¥ cos 6)3
U= - Mgk cos 0 + constant,

where k is the distance of the centre of gravity from O and M is the mass of the top.
‘We have therefore the two integrals ¢'+y/cog §=n and Cncosd+4 sin*dy/'=m
where n and m are two constants, the former representing the angular velocity of
the top about its axis and the latter the amgular momentum about the veriical.
By eliminating ¢’ and ¢/ and making the energy E a minimum, show (1) that a
state of steady motion, with real values of the constants m and n, is given by f=a
provided C%?-4Mghd cos a is positive. Show (2), by examining the sign of
d*E[d6?*, that this motion is stable, Thus the axis of the top will describe a right
cone of semi-angle a round the vertical through the point of support with an
angular velocity given by the value of /.

Ex. 8. A solid of revolution moves in steady motion on & smooth horizontal
plane, so that the inclination 6 of its axis to the vertical is constant, Prove that
the angular velocity x of the axis about the vertical is given by

a__On My dz _ 0
K~ Zcos0" Auinboosb do "
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where ¢ is the altitude of the centre of gravity above the horizontal plane, n the
angular velocity of the body about the axis, C, 4 and 4 the principal moments
of inertia at the centre of gravity and M the mass. Find the least value of » which
makes u real and determine if the steady motion is stable.

Examples of Oscillations about Steady Motion.

103. The oscillations of a system about a state of steady
motion may be found by methods analogous to those used in the
oscillations about a position of equilibrium. Let the general equa-
tions of motion of the bodies be formed by any of the methods
already described. If any reactions enter into these equations it
will be generally found advantageous to eliminate them. Let.
the co-ordinates used in these equations to fix the positions of
the bodies be called 6, ¢, &c. Suppose the motion, about which
the oscillation is required, to be determined by €= f(f),
¢="F(t), &c. We then substitute § =f(t) +2, ¢=F (f) +y, &c,
in the equations of motion. The squares of z, y, &c. being neg-
lected, we have certain linear equations to find &, y, &¢. These
equations can, however, seldom be solved unless we can make ¢
disappear explicitly from them. When this can be done the
linear equations can be solved by the usual known methods, and
the required oscillations are then found.

In what follows we shall first illustrate the method just de-
scribed- by forming the equations in a few interesting cases from
the beginning. We shall then generalize the process and obtain
a determinantal equation analogous to that given by Lagrange for
oscillations about a position of equilibrium. This equation will be
adapted to all cases which lead to differential equations with
constant coefficients.

104. ‘Theory of Watt's Governor. To find the motion of the balls in Watt's
Governor of the steam engine,

The mode in which this works to moderate the fluctuations of the engine is well
known, A somewhat similar apparatus has been used to regulate the motion of
clocks, and in other cases where uniformity of motion is required. If there be any
increase in the driving power of the engine, or any diminution of the load, so that
the engine begins to move too fast, the balls, by their increased centrifugal force,
open outwards, and by means of a lever either cut off the driving power or increase
the load by a quantity proportional to the angle opened out. If on the other hand
the engine goes too slow, the balls fall inward, and more driving power is ealled
into action. In the case of the steam engine the lever is attached to the throttle-
valve, and thus regulates the supply of steam. It is clear that a complete adapta-
tion of the driving power to the load cannot take place instantaneously, but the
machine will make a series of small oscillations about & mean state of steady
amotion. The problem to be considered may therefore be stated thus:—

Two equal rods 04, 04’, each of length I, are connected with a vertical spindle.
by means of a hinge at O which permits free motion in the vertical plane 404'. At
4 and 4’ are attached two balls, each of mass m, To represent the inertia of the
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other parts of the engine we shall suppose a horizontal fly-wheel attached to the
spindle, whose moment of inertia about the spindle is I, When the machine is in
uniform motion, the rods are inclined at some angle a to the vertical, and turn
round it with uniform angular velocity n. If, owing to any disturbance of the
motion, the rode have opened out to an angle § with the vertical, a force is called
into play whose moment about the spindle is — (9 —a). It is required to find the
oscillations about the state of steady motion,

Let ¢ be the angle the plane 404’ makes with some vertical plane fixed in
space, The equation of angular momentum about the spindle is :

,% {(I+2mk' sinﬂo)‘f—;—:} = B(0-a) ceereererrerreerierennes (1),

where mk? is the moment of inertia of a rod and ball about a perpendicular to the
rod through O, the balls being regarded as indefinitely small heavy particles, The
semi vis viva of the system is

T= 51( )+mk’ (“) '20(‘1"’) §,

and the moment of the impressed forces on either rod and ball about a horizontal

through O perpendicular to the plane 404’ is 3 dU/d0= —mghsin 6, where h is the

distance of the centre of gravity of a rod and ball from O. Hence by Lagrange’s
ddT dT dU

equation Gtae a8 =45’ we have

z—i: ~gin fcos 0 (df)'= - % (230 X 2),
where a has been written for #3/h, This equation might also have been obtained by
taking the acceleration of either ball, treated as a particle, in a direction perpen-
dicular to the rod in the plane in which 6 is measured.

To find the steady motion we put §=a, dg/dt=n, the second equation then gives
nlcosa=g/a. To find the oscillations, we put 0=a+x,d¢/dt=n+y. The two
equations then become

(I+2mk? sin? u.) + 2mk®n sin 2a iz__ - Bz

d'z g9 :
2 -Z .

lt’ - nsgin 2ay (n cos 2a cos8 G) z

To solve these equatlons, we must write them in the form

(sm2a8+§;g‘,n) + (2fk,+sm’ )6y=02’

(8*+n?sin? a) 2 — n 8in 2ay =0
where the symbol 3 stands for the operation d/d¢, Eliminating y by cross multi-
plication we have

[(“ml'k—,+sin3a) 8%+ n%sinta (1+Scos’a+2m—1—k, 5+ %k,nsm%] z=0.

The real root of this cubic equation is necessarily negative because the last term
is positive. The other two roots are imaginary because the term 3 has dis-
appeared between two terms of like signs. Also the sum of the three roots being
zero, the real parts of the two imaginary roots must be positive. Let these roots
therefore be — 2p and p£g~/ — 1. Then

2=He %+ Ke* sin (gt + L),
where H, K, L are three undetermined constants depending on the nature of the
initial disturbance. Thus it appears that the oscillation is unstable. The balls
will alternately approach and recede from the vertical spindle with increasing
violence,
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105. The defect of a governor is therefore that it acts too quickly, and thus
produces considerable oscillation of speed in the engine. If the engine is working
too violently, the governor cuts off the steam, but owing to the inertia of the parts
of the machinery, the engine does not immediately take up the proper speed.
The consequence is that the balls continue to separate after they have reduced
the supply of steam to the proper amount, and thus too much steam is cut off,
Similar remarks apply when the balls are approaching each other, and a con.
siderable oscillation is thereby produced. This of course is but an incomplete ex-
planation, but that the oscillation thus produced is of considerable magnitude has
been striotly proved in Art. 104, It will be presently shown that this fault may be
very much modified by applying some resistance to the motion of the governor.

In the same way when the motion of clock-work is regulated by centrifugal
balls, it is found as & matter of observation that there is a strong tendency to
irregularity. If the balls once receive in the slightest degree an elliptic motion,
the resistance 8 (6 — a) by which the motion of the balls is regulated may tend to
render the ellipse more and more elliptical. To correct this some other resistance
must be called into play. This resistance should be of such a character that it
does not affect the circular motion and is only produced by the ellipticity of the
movement,

One method of effecting this has been suggested by Sir G. B. Airy. The elliptic
motion of the balls may be made to canse a slider on the vertical spindle to rise
and fall. If this be connected with a horizontal circular plate in a vertical
cylinder of slightly greater radius, and filled with water, the slider may be made
to move the plate up and down by its oscillations. Thus the slider may be
subjected to a very great resistance, tending to diminish its oscillations, while its
place of rest, as depending on statical, or slowly altering forces, is fofally un-
affected. Memoirs of the Astronomical Society of London, Vol. xx., 1851,

The general effect of the water will be to produce a resistance varying as the
velocity, and may therefore be represented by a term — ydd/dt on the right hand of
equation (2). The solution being continued as before, the cubic will now take the
form

[( g T i a)(83+16’)+nsm’ (1+9¢sos’u+2lk2 8+2£k,nsm2¢]z=0.

If the roots of this cubic are real, they are all negative, and the value of z takes the
form x=Ae My Be Py Ce™,
where —\, —u, —~» are the roots, and 4, B, C are three undetermined constants.

If one root only is real, that root is negative, and if the other two be p+¢q =1 the
value of z takes the form
z=He "+ Ke* sin (¢t + L),
where H, K, L as before are undetermined constants.
In order that the motion may be stable it is necessary that p shonld be negative.
The analytical condition* of this is

1 B
PR
7 (1+3cos “+2mk’) 2mk,2cota.

* If the roots of the cubic az®+ba%+cz+d=0 be z=a+pB+/(~1) and ¥y, we
have - bja=2a+7, cla=2ya+a?+p? —dla=(a®+p?)y, whence we easily deduce
(be - ad)/a®= - 3a {(a +v)*+ B} ; hence bc — ad and a have always opposite signs.
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If 4 be sufficiently great this condition may be satisfied. The uniformity of
motion of the rods round the vertical will then be disturbed by an oscillation whose
magnitude is continually decreasing and whose period is 2x/g. By properly choosing

" the magnitude of J when constructing the instrument, the period may sometimes
be so arranged as to produce the least possible ill effect. If the period be made
very long the instrument will work smoothly. If it can be made very short there
will be less deviation from circular motion.

In this investigation no notice has been taken of the frietions at the hinge and
at the mechanical appliances of the Governor, which may mot be inconsiderable.
These in many cases tend to reduce the oscillation and keep it within bounds.

106, In the case of Watt’s Governor if any permanent change be made in the
relation between the driving power and the load, the state of uniform motion which
the engine will finally assume is different from that which it had before the change.
Thus, when the engine is driving a given number of looms, let the rods 04, 04’ of
the Governor be inclined to each other at an angle 2a and be revolving about the
vertical with an angular velocity n. If some large number of the looms is sud-
denly disconnected from the engine, the balls will separate from each other, and the
rods will become inclined at some other angle 2a’. In this case, if n’ be the angular
velocity about the vertical, n?cos a’=n2cosa. The rate of the engine is therefore
altered, it works quicker with a less load than with a greater. This is a great
defect of Watt's Governor. For this reason it has been suggested that the term
Governor is inappropriate, the instrument being in fact only a moderator of the
fluctuations of the engine.

This defect may be considerably decreased by the use of Huyghens’ parabolic
pendulum. In this instrument the centres of gravity 4, 4’ of the balls are made to
move along the arc of a parabola whose axis is the axis of revolution. Let AN be
an ordinate of the parabola, 4G the normal, then NG is constant and equal to L,
where 2L is the latus rectum, Regarding the balls as particles, and neglecting the
inertia of the rods which connect them with the throttle valve, we see by the
triangle of forces that the balls will rest in any positions on the parabola, if
n3L =g, where n is the angular velocity of the balls about the vertical through O.
It is also clear that when the angular velocity is not that given by this formula, the
balls (unless placed at the vertex) must slide along the arc. Let us now consider
how this modification of the governor affects the working of the engine. When the
load is diminished the engine begins to quicken; the balls separate and the steam is
cut off. It is clear that equilibrium will not be established until the quantity of
steam admitted is just such as to cause the engine to move at exactly the same rate
as before.

Ex. Show that when the inertia of the rod and balls are taken account of,
the centre of gravity of either ball and rod must be constrained to describe a
parabola whose latus rectum is independent of the radius of the ball, if the
Governor is to cause the engine always to move at a given rate,

It should be mentioned that several other methods of avoiding this defect have
been invented besides the parabolic pendulum. But any further description of these
would be here out of place,

107. The reader who may be interested in the subject of Governors may refer
to an article by Sir G, B. diry, Vol. XI, of the Memoirs of the Astronomical Society.
1840, where four different constructions are considered. He may also consult an
article by Mr Siemens in the Phil. Trans. for 1866, and a brief sketch of several
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kinds of governors by Prof. Mazwell in the Phil. Mag. for 1868. An account of
some experiments by Mr Ellery, on Huyghens’ parabolic pendulum, may be found
in the Astronomical Notices for December, 1875,

108. Laprace’s Turee ParticLEs. It has been shown in Vol. I. Chap. VL.,
that if three particles be placed at the corners of an equilateral triangle and pro-
perly projected, they will move under their mutual attractions so as always to
remain at the angular poings of an equilateral triangle. These we may call
Laplace’s three particles. It is our present object to determine if this motion is
stable or unstable®,

‘We ghall begin by assuming that the three particles remain always very nearly
at the corners of an equilateral triangle. We shall then have to determine whether
their oscillations about these corners are real or imaginary. To effect this we might
choose their common centre of gravity as a fixed origin of co-ordinates, But the
triangles formed by joining the particles to their common centrg of gravity are not
marked by any simplicity of form. Instead of referring the motion to the centre of
gravity it will be more convenient to reduce one of the particles to rest, and to con-
sider the relative motion of the other two. We have thus only one triangle to
examine, and that one nearly equilateral,

Let the mass M of the partficle to be reduced to rest be taken as unity, and let
m, m' be the magses of the other fwo. Let 7, , R bg the distances between the
particles Mm, Mm', mm’; and let ¢/, ¢, ¥ be the angles opposite to these distances.
If 9, @ be the angles of r, v make with a siraight line fixed in space, and if the law of
attraction be the inverse xth power of the distance, the equations of motion are

1+m m’ cos m' cos
dt, ( ) moosy  MOBP_p

< R" ,
(r,dO) msm‘p msm¢ =0
rdt R*

with two similar equations for the motion of m'.

Let us now put r=a+z, r'=a+2z+X, and let the angle between these radii
vectores be {x + Y, also let #=nt+y, where z,y, X and Y, are all small quantities
whose squares are to be neglected. It should be noticed that a variation of z, y
alone, X and Y being zero, will represent a variation of steady motion in which the
particles always keep at the corners of an equilateral triangle, while a variation of
X, Y will represent a change from the equilateral form. The former of these by
hypothesis is a possible motion, hence the equations can be satisfied by some
values of z, ¥ joined to X=0, Y=0, By this choice of variables we may hope to
discover some roots of the fundamental determinant previous to expansion, and
thus save & great amount of numerical labour. If & stand for d/d¢, and b= a1,
the four equations will now become

* In a brief note in Jullien’s Problems, Vol. 11. p. 29, it is mentioned that this
question has been discusded by M. Gascheau in a Thése de Mécanique, the particles
being supposed to atiract each other according to the law of nature. The result
arrived at is that the motion is stable when the square of the sum of the masses is "
greater than 27 times the sum of the products of the masses taken two and two.
No reference is given to where M. Gascheau’s work can be found, and the author is
therefore unable to give a deseription of the process employed.
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) 8 , A8,
{48 - (x+1) (1+m+m)}z—2abn6y—zm x+1) X -gm (x+1)a¥Y=0,
2bn3z + abdly — %m’(:& )X +2 m (x+1)aY=0,
mw, ., A/3
{688 (x-+ 1)(14+m -+ m)} - abndy + {w-(x+1)(1+ Z+m) {x-{200m0 +3mier 1] =0,
2bnu+awy+{2bna-5£—3(x+ 1)m§X+ {abd’-—%m(x{»l)a} Y=0,

109. To solve these we put z=Ae*, y=BeM, X=Ge, Y=HeM. Substituting
and eliminating the ratios of 4, B, G and H we obtain a determinantal equation
whose constituents are the coefficients of r, y, X and Y with \ written for 8. This
equation will give eight values of A\. We see at once that one factor is \. This might
have been expected, because we know that a variation of y, (with z, X and Y all zero,)
is a possible motion. Again, some variation of z and y, (with X and Y both zero,) is
also a possible motion, hence some factor of the determinant can be found by ex-
amining the first two columns, By subtracting from the first 2» times the second
column we find that this factor is dA% - (x - 3)(1 + m +m’) =0,

To find the other factors we divide the determinant by the factors already
found., Then subtracting the first row from the third and the second from the
fourth we have three zeros in the first column and two in the second. The
expansion is then easy, 'We see that there is another factor ), also

YA+ DN (B - k) (L+m+m) + (1+«) (m+m'+mm)=0.

The two zero roots give =4, + .t with similar expressions y, X and Y. But
by substitution in the equations of motion we see that x=4,, y =B, - §(x +1)4nt/a,
X=0and Y=0. These roots therefore indicate merely a permanent change in the
size of the triangle, On examining the other values of A?, we find (1) The motion
cannot be stable unless « is less than 3. (2) The motion is stable whatever the
masses may be, if the law of force be expressed by any positive power of the dis-
tance or any negative power less than unity. (3) The motion is stable to a first
approximation if

(M+m+m)? 1+«\2
Mm + Mm +mm' (3 - x) !
where M, m, m' are the masses. To express the co-ordinates in terms of the time,
we must return to the differential equations of the second order. The results are
" rather long, and it may be sufficient to state that when, as in the solar system, two
of the masses are much smaller than the third, the inequalities in their angular
distances, as seen from the large body, have much greater coefficients than the
inequalities in their linear distances from the same body.

The reader will ind a more complete discussion of this problem in a paper by
the author published in the sixth volume of the Proceedings of the London Mathema-
tical Society, 1875. The co-ordinates z, y, X, Y are expressed in terms of the
time and the possibility of any small term rising into importance is shortly treated.

Theory of oscillations about steady motion.

110. Having illustrated by two important examples the
methods of practically finding the oscillations about a state of
motion, we pass on to the general theory of the subject.
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111. ‘The Determinantal Equation of steady motion.
To form the general equations of oscillation of a dynamical system
about a state of steady motion.

Let the system be referred to any co-ordinates 6, ¢, ¥, &c.
If the geometrical equations do not contain the time explicitly
the vis viva 27" may be represented by the expression

2T=P,0"+ 2P 0'¢' + P, " + &c.
where P, P,, &c. are known functions of the co-ordinates 6,
¢, &c. Let the force function be U. Let the state of motion
about which the system is oscillating be determined by 8 =£(¢),
¢ =F(t), &. To determine these oscillations we put 8 =f(t) + =,
¢=F(t)+y, & Let the Lagrangian function L=T+ U be
expanded in powers of w, y, &c. as follows:
L=L,+Ax + Ay +&c. + Cx+ Cy + &c.
+3 (4,27 + 24 2y + &) + 3 (0, + 2C y + &c.)
+ Gz’ + Gy + G,y + &e.
It will afterwards be found convenient to write B, = G, — G,,,
E,=@,- @,, and so on.

We shall now define a steady motion to be one in which all the
coefficients in this expansion are independent of the time. The
physical characteristic of such a motion is that when referred to
proper co-ordinates the same oscillations follow from the same dis-
turbance of the same co-ordinate at whatever instant it may be
applied to the motion. If the coefficients are not constant for the
co-ordinates chosen it may be possible to make them constant by
a change of co-ordinates. There are obviously many systems of
co-ordinates which may be chosen, and a set may generally be .
found by a simple examination of the steady motion. If there are
any quantities which are constant during the steady motion, such
as those called £ 7, &c. in Art. 98, these may serve for some of
the co-ordinates, others may be found by considering what quanti-
ties appear only as differential coefficients or velocities, for example
those called «, y, &c. in the same article. If none of these are
obvious, we may sometimes obtain them by combining the existing
co-ordinates. Practically these will be the most convenient
methods. of discovering the proper co-ordinates.

To obtain the equations of motion we must now substitute
the value of L in the Lagrangian equations

d dL dL

a—td—;'—d.;:()' &c.-—O,
and reject the squares of small quantities. The steady motion
being given by @, y, &c. all zero, each of these must be satisfied
when we omit the terms containing #, y, &. We thus obtain the
equations of steady motion, viz.

C.=0, C,=0, &c.=0,
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which by Taylor’s theorem are the same as the equations (1) of
steady motion given in Art. 98, :

Omitting these terms and retaining the first powers of all the
small quantities we obtain the equations of small oscillations.
Representing differentiations with regard to ¢ by the letter 8, we
have
(4,8-C)z+(4,8-ES-C)y+(A,8~ES-C,)z+ &c.=0,
(A +E8—C)a+ (4,8~ 0Ly + (4,8~ ER3~Cp)z+&e. =0,

&e. + &e. + &e, =0.

112. To solve these we write = Le¥, y=Me¥, &c. Substi-
tuting and eliminating the ratios L, M, &c. we obtain the following
determinantal equation =

AN -C AN-E\-C,, AN-EMN-C,, & |=0.

1’

AN+EN-C,, AN-C,, AN-EX—C,, &
AN+EN-C,, AN+EA-C,, AN —C,, &e.
&e. “&e. &e, &e.

If in this equation we write — A for A the rows of the new deter-
minant are the same as the columns of the old, so that the deter-
minant is unaltered. We therefore infer that the determinantal
equation when expanded contains only even powers of .

We notice that if we remove from this determinant the terms
which contain the letter X, the remaining determinant is the same
a8 that which gives the oscillation abont a position of equilibrium,
Art. 58. We may therefore say that the terms which depend on
E are due to the centrifugal forces of the steady motion.

113. Conditions of Stability. Regarding this as an equa-
tion to find A%, we notice that if the roots are all real and negative,
each of the co-ordinates z, y, &c. can be expressed in a series of
trigonometrical terms having different periods; the motion will
therefore be stable. If any one of the roots is imaginary or if
any one is real and positive, there will be both positive and
negative real exponentials entering into the expressions for #, y, &c.
and therefore the motion will be unstable. The condition of dyna-
mical stability is therefore that the roots of this equation must all

be of the form A=+ p \J— 1, where p 18 some real quantity.

114. Number of Oscillations. It follows also that when
a system, under the action of forces which have a potential, oscil-
lates about a stable state of steady motion, the oscillations of the
co-ordinates are represented by trigonometrical terms of the form
A sin (At +a) which are not accompanied by any real exponential
factors such as those which occurred in the problem of the Governor.

We see further that there will in general be as many finite
values of A' and therefore as many trigonometrical terms of
different periods as there are co-ordinates. It often happens, as
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explained in Art. 111, that some of the co-ordinates are absent from
the expression for L, appearing only as differential coefficients.
Suppose for example @ to be absent; then C,, C,,, &c. are all
zero, and we may divide A both out of the first 1ine and the first
column of the fundamental determinant. We therefore have two
zero values of A, while at the same time the number of finite
values of A*is diminished by unity. Hence the number of trigo-
nometrical terms of different periods cannot exceed the number of
co-ordinates which explicitly enter into the Lagrangian function.
Thus, in Ex. 2 of Art. 102, the function 7'+ U has only the co-
ordinate @ explicitly expressed, the others ¢' and ' appearing
only as differential coefficients. It follows that if a top is disturbed
from a state of steady motion, there will be but one period in the
oscillation.

115. The relations between the coefficients L, M, &c. in the
exponential values of z, y, &c. may be obtained without difficulty
if we remember that the several lines of the fundamental deter-
minant are really the equations of motion. Taking any one line;
multiply the first constituent by L, the second by M, &c. and
equate the sum to zero. We thus obtain as many equations as
there are co-ordinates. On the whole we shall have, exactly as in
Lagrange’s equations, Chap. IL., twice as many arbitrary constants
as there are co-ordinates, all the other constaunts being determined
by the equations just found. The arbitrary constants are deter-
mined by the initial values of thé co-ordinates and their differential
coefficients.

But, unlike Lagrange’s equations, the quantity A occurs in
the first power in each of these equations, so that the ratios of
L, M, &c. thus found may be imaginary. If —p? —p} &c. be the
values of \', the expressions for the co-ordinates when rationalized
may therefore take the form

s=A sin(pt+a,)+A,sin(pt+a)+...

y=Bsin(pt+B,) + B,sin(pt+8,) +...
z=&c.

where @, is not necessarily equal to B,, nor a, to B,, &c., though
they are connected together.

116. Principal Oscillations. When the initial conditions
are such that every co-ordinate is expressed by a trigonometrical
term of one and the same period, the system is said to be perform-
ing a princypal or harmonic oscillation. Thus each trigonometrical
term corresponds to a principal oscillation, and any oscillation of
the system is therefore said to be compounded of its principal
oscillations. The physical characteristic of a principal oscillation
18 that the motion of every part of the system 1s repeated at a con-
stant interval. If the type of the principal oscillation be A'=—p?,

R. D. IL 5
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we see that throughout the motion we shall have 2”"=-—p*z,
y ""pn Y &e.

117. Ex. A homogeneous sphere of unit mass and radius a is suspended from
a fixed point by a string of length b and is set in rotation about the vertical dia-
meter. When the sphere is slightly disturbed from this state of steady motion, let
bz, by and b be the co-ordinates of the point on the surface to which the string is
attached; bz +af, by+an and db+a the co-ordinates of the centre, the fixed point
being the origin and the axis of z vertical and downwards, Also let x=¢+y where
¢ and y have the meanings usually given to them in Euler’s geometrical equations,
see Yol 1. Chap. v. Thus before disturbance x’=n. Prove that the Lagrangian
function is

-51(x —‘i+f") e+ + 0P oy P-g oA 4 o EETL

If the motion of the centre of gravity be represented by a series of terms of the
form 3 cos (pt + a), prove that the values of p are given by

ba\ _ b,
(p’~§- (p’ -5 Zp-
Show that, whatever sign n may have, this equation has two positive and two

negative roots which are separated by the roots of either of the factors on the left-
hand side.

118. Impnulsive Forces. If we regard an impulse as the limit of a force acting
for a very short time, we may deduce from Art, 111 the equations of motion of a
system moving in steady motion and suddenly disturbed by an impulse. Integrating
the equations of motion given in Art. 111 with regard to the time during the limits
of the impulse, the integrals of all the terms except those of the form 43« will be
zero, This follows from the definition of an impulse given in Chapter m. of
Vol, 1. or from the argument given in adjusting Lagrange’s equations to impulses
in Chapter vii. of Vol. 1.

The equations of motion for impulses are therefore

Ay, (0z) ~ 8z) + 414 (8 = dYo) +......=X,
Ay (37, - o) + Aoy (Byy ~ e + ... =¥,
&o. =&o.

Here &, - 52,, &c. are the changes in the velocities of the co-ordinates produced by
the jerks. The quantities X, Y, &c. are the integrals of the disturbing forces and
therefore measure the jerks. If U be the force function of the impulses as explained
in Vol. 1. Chap. vm. we have X=dU/dz, Y=d4U/dy, &c.

119. Analysis of the roots of the detexminantal equation. If the determi-
nantal equation of Art. 112 is not very complicated we may expand it in powers of
A. We thus have an equation with only even powers of \. The important point to
settle is the number of real negative values of A\? which satisfy the equation. To
determine this, we may use Sturm’s theorem. Since the equation has only alternate
powers of A\, we may use the short rule which will be given in the chapter on the
Conditions of Stability to find the successive remainders.

But if it be inconvenient to follow this process, we may use some of the following
theorems.

120. We shall first show that the quadratic expression

24 =4y 7%+ 24,, 2y + Ay Y + &e.
isa one-szgned positive function. To prove this we notice that the coefficients 4,,, &e.
are what the coefficients P;,, &c. of the vis viva become when we write for the
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‘co-ordinates 6, ¢, &e. their values in the steady motion, If then, by any linear re-

lation between the variables, we could make 4 equal to zero, we could by introducing
a constraint into the motion represented by a similar relation between ¢, ¢', &o.
cause the vis viva to be zero. But since the vis viva is essentially positive, this is
impossible.

‘When a given quadratic function is & one-signed positive function, it is known
(Art. 60) that its discriminant is positive, It follows immediately that every dis-
criminant formed after putting any of the variables 2, ¢, &c. equal to zero must
also be positive.

121, Theorem 1. 1t frequently happens that there are but two independent
co-ordinates, so that the determinant is reduced to two rows, If we write

D=A4y,4y - 4,53, D'=0yCp - G5y ©0=4,,Cp4+ 49C,, — 24,4 Cyy,
the determinantal equation when expanded reduces to

DN+ (-0 +E )N+ D'=0.
The conditions of stability are therefore (1) D' is positive, (2) E,,~ © is positive and
greater than 2,/DD'. See Art. 113.

These conditions may also be expressed thus, Omitting the terms which contain
E,, a8 a factor, we notice that the determinantal equation assumes Lagrange’s form.
It therefore reduces to a quadratic to find A\? whose roots are both real by Art. 58.
Let a and B be these roots. If both are negative the motion is stable. If both are
positive the motion is stable or unstable according as E’,,/D‘ is numerically greater or
less than A/a -+ A/B, the roots being taken positively. If a and 8 have opposite signs
the motion is unstable.

122. Theorem II. Whatever be the number of co-ordinates the steady motion
cannot be stable unless all the values of A% given by the determinantal equation are
real and negative, The coefficient of the highest power of A? (Art. 120) is positive,
hence the term independent of A3 must also be positive. 'We therefore infer that the
steady motion cannot be stable unless the discriminant of the quadratic expression

20=-C #2202y -~ Cuuy?+......
18 positive.

123. Theorem III. Let there be n co-ordinates and let A be the determinant
given in Art. 112, Beginning with this determinant we may form a series of deter-
minants each being obtained from the preceding by erasing the first line and the
first column. Let us represent these by A,, A,, &&. The determinant A is not
altered if we border it with a column of zeros on the right-hand side and & row of
zeros at the bottom, provided we put unity in the corner, We may therefore con-
sider A,=1. Thus we have a series of determinantal functions of A\? analogous to
those used in connection with Lagrange’s determinant. See Art. 58.

Let us substitute in this series of determinants any negative value of A and
count the number of variations of sign. If as A2 passes from A?= —a to N2=-§,
« variations of sign are lost, then the number of real roots between —a and —f is
either exactly equal to x or exceeds x by an even number.

To prove this, we let I, , I,5, &c. be the minors of the several constituents of the
determinant A. We notice that I, is changed into I, by changinhg the sign of A.
Hence if I,=¢ (\%)+ Ay (A?),
then I=¢ (A% - AP (\D).

Thus the product I, I, is necessarily positive for all negative values of A% It also
follows that if I,, vanishes for any negative value of A%, then I,, vanishes for the
same value of A2,

g 5.9

4
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. Btarting with the equation AAy=1I,; Iy - I), I, the rest of the proof is so nearly
the same as that for the corresponding theorem in Lagrange’s determinant (Art. 58)
that it seems unnecessary to reproduce it here. Passing over therefore this proof
we notice the following applications.

124, Theorem IV. The ooefficients of the highest powers of A* in the series of
determinants A, A,, &o. are the discriminants of the quadric 4 (Art. 120), and
are therefore necessarily positive. The signs of the series of determinants when
A= —o are therefore alternatively positive and negative. If the discriminants of
the quadric 2C= - 0,2~ 3C 2y — Copy? ~ &o.
be also all positive, the signs of the series of determinants when A3=0 are all
positive. Thus the full number, viz. n, of variations of signs have been lost in
the passage from A*= — o to A\?=0, It immediately follows from the theorem just
stated that when the quadric C is a one-signed positive function all the roots of the
determinantal equation are real and negative.

‘We may also express this by saying that when the quadric function C is a
minimum for all displacements from the steady motion, that steady motion is stable.

125. When this occurs the roots of each of the series of determinants A, A,
A,, &c. are all real and negative and the roots of each separate or lie between the
roots of the determinant next above it.

This follows from the mode of proof adopted in discussing Lagrange’s deter-
minant,

126. Theorem V. Bqual roots. The existence of equal roots usually indicates
that there are terms in the solution with ¢ as a factor, but it will be shown in
another chapter that this is not the case when the minors of the determinant A
are also zero, -

Suppose, as in the last proposition, that the full number of variations of sign
have been lost in the passage from A= ~ to A\*=0. Then it may be shown, as
in the corresponding proposition in Lagrange’s determinant, that if the funda-
mental determinant have r equal roots, then every first minor has r—1 roots equal to
each of these and every second minor has r — 2 roots equal to each of these, and so on.

‘We therefore infer that the existence of equal roots merely indicates a cor-
responding indeterminateness in the coefficients of the principal oscillation which
is derived from these equal roots.

Thus in Art. 115 we have n -1 independent equations to find the ratios of the
coefficients L, M, &c. of any exponential. But when there are r equal roots we
have only n - r independent equations leaving r of the coefficients independent.

127, Theorem V1. If we remove the terms which contain the centrifugal forces
the remaining determinant is the same form as Lagrange’s determinant. Thus we
have two determinantal equations each of which, for its own use, may be regarded
as an equation to find A% From each of these we may derive a series of deter-
minants formed by the rule given in Art. 58. If we count the number of variations
of sign when A'= - o and when A?=0, it is evident that each of the two series
exhibit the same loss, It therefore follows that the equation with the centritugal
forces has at least as many negative roots as the corresponding Lagrange’s equation,
and if it have more, the excess is an even number. If therefore all the roots of the
corresponding Lagrange’s deferminants are negative, then all the roots of the
equation with the centrifugal forces are also real and negative. Thus the general
effect of these centrifugal forces is to increase the stability.
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128. Bxamples. Ex.1. If the determinant A vanish for any negative value
of A2, prove that for this value of A? all the leading minors, viz, I;, Iy, &¢., have
the same sign.

Ex. 2. If the determinant A vanish for any negative value of A? which makes
all the leading minors equal to zero, prove that every minor is also equal to zero,

Ex. 8. If the determinant be of the form

A=|N-Cy, E\ =0,
—E\, M-Cy

where Cy;, Cy, E,,, are all positive, show that no variations of sign are lost in the
series of determinants A,A;, A; as A\ passes from M= - to A*=0. Show also
that if E;3 > «/Cy; +1/Cyy the roots of the quadratio are real and negative. If
E,3=4/Cy1 ++/Ca, show that the roots are equal and negative. In this latter case

since the minors are not zero, the solution will contain terms with ¢ as & factor.

. Ex. 4. If the fundamental determinant be of the form
A= N-Cy, Eg, Ep\, &c.|=0,

| =B\, A=Cp, Eg), &c.
. I &e. = &e &o. &o.
and if A vanish for two equal negative values of A\? which are numerically greater
than the greatest positive quantity in the series Cy; , Cyq, &ec., prove that these equal

roots will not introduce any terms into the solution which contains ¢ as a factor.

The substance of this section may be found partly in a paper by the author
published by the London Mathematical Society, 1875, and partly in the author’s
Essay on the Stability of Motion, 1877.

The Representative Point.

129. When a dynamical system has not more than three
co-ordinates, we may obtain a geometrical representation of the
oscillation. Let these independent co-ordinates be z, y, 2. If we
regard these as the Cartesian co-ordinates of some point P, it is clear
that the positions of P as it moves about will exhibit to the eye
the motion of the system. We may call this point the representative
pownd.

130. Oscillation about equilibrium. Let us first suppose
the system to be oscillating about a position of equilibrium, and
let it be performing any principal oscillation. Then throughout the
motion the co-ordinates z, y, z bear a constant ratio to each other
(Art. 53). We therefore infer that the path of the representative
particle is a straight line passing through the origin. If the oscil-
lation be defined by the type sin (pt +a) we have also (by Art. 55)

" = —p'z, y’ =—p'y, &c. Hence the representative point oscillates
in a straight line unth an acceleration tending to the origin and
varying as the distance therefrom.

131. To find-the position of this straight line let the vis viva
2T and the force function U be representeg by

2T = A"w"+2Auw'y'+&c_ ) 1
2(U- U.,)=0’,.w’+2 ,,a:y+&c. Cerrererenenee ..(1)
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Then by Lagmnge’s equations, since &” = — p’ac, &c., we have
.—p' (Auw + A,,y-i—&c.) = Onx_.l_ C“y +&c'} (2)
—p.(Alfz+A’g+&c.)=oltz_*_ 0“y+&c' veeesssad .

. &e. =&
Omitting the accents in 7' and the constant term U, let us put
24 =42 +24,zy+ &”'} ®)
_20___ana+2cuwy+&c‘ .................. .

We also construct the two quadrics 4 =a, C'=« where a and
are any constants. These quadrics have their centre at the origin
and have a common set of conjugate diameters which may be
found by the following process. Let z, y, 2 be the Cartesian co-
ordinates of any point on one of the three conjugates. Then, since |
the diametral planes of this point in the two quadrics are parallel,

we have
dA _dC dA_dC d4  dC
Pz =dz" Pay~dy’ ¥ dz T &z
Comparing these with the equations (2) we see that when the
system is performing a principal oscillation the representative point
P oscillates in one of the common conjugate diameters of the quadrics.

132. By Euler's theorem on homogeneous functions we have

" pA =C. Applying the same reasoning to equations (2) we have

p'4=0C. Hence p=p' Let the diameter described by the repre-

sentative point cut the quadrics 4=a and C=¢ in the points

D and D’ and let O be the origin. Then putting P at D we have
A =a, and since C is a homogeneous function we have ;

C=(0D/0OD'yy. :
Hence p*=(0D/0OD)*y/2. The period of oscillation corresponding
to any common conjugate diameter ODD’ is therefore equal to
2#92’ z . ‘
ODWV ¢°

133. The quadric C=ry possesses the property that if x, y, z
be the co-ordinates referred to any axes of a point P on its !
surface the work done by such a displacement from the position of
equilibrium is constant and equal to — .

134. As an example of this geometrical analogy let us consider the following
problem. A4 rigid body, free to move about a fized point O, is under the action of
any forces and makes small oscillations about a position of equilibrium; find the
principal oscillations.

Let 04, OB, OC be the positions of the principal axes in the position of i
equilibrium, 04’, OB, OC' their positions at the time ¢. The position of the body
may be defined by the angles between (1) the planes 40C, 40C’, (2) the planes
BOC, BOC', (3) the planes CO4, COA'. Let these be called 0, ¢, y respectively.
Then 6, ¢, Y are angular displacements of the body about 04, OB, OC. Taking
these as the axes of co-ordinates in the geometrical analogy; a small displacement
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of P from the origin to a point =0, y=¢, =y represents a rotation of the body
about the straight line described by P and whose magnitude is measured by the
distance traversed by P.

If I,, I,, I, be the principal moments of inertia at 0, the vis viva of the body
is clearly . 2T =107+ I ;¢ + Iy
Writing z, y, z for @, ¢', ¥ as before, the quadric T=a or 4=a is evidently the
momental ellipsoid at the fixed point.

Let the work of the forces as the co-ordinates change from zero to 6, ¢, ¥, or
x, ¥, 2 be given by

2U =023 +2C, 52y + &o.
Then, following the analogy, as P moves along a radius vector OD’ of the quadrie
U=-4 or C=v, the work is —(OP/OD’)3y. Hence this quadric possesses the
property that the work done by the forces when the body is twisted through a given
angle round any radius vector varies inversely as the square of that radius vector.
If the equilibrium is stable, the work due to a rotation about every diameter must
be negative, the quadric must therefore be an ellipsoid.

It now follows from the general theorem that the body will perform a principal
oscillation if it is set in rotation about any ome of the three conjugate diameters of
the momental ellipsoid and the ellipsoid U=-+v, and will therefore continue to
oscillate as if that diameter were fized in space.

The quadric U has been called the ellipsoid of the potential. This name was
given to it by Prof. Ball, who arrived at the theorem just proved by a different
course of reasoning. See his Theory of Screws, Art. 126. The following application
is also due to him.

135. When the only force acting on the body is gravity, the ellipsoid of the
potential is a surface of revolution about a vertical axis. For the inverse square of
any radius vector measures the work done in turning the body through a given
small angle about that radius vector. But the work is also proportional to the
vertical distance through which the centre of gravity has been elevated from its
position in equilibrium vertically under the point of support. Hence all radii
vectores which make the same angle with the vertical are equal. Further the
vertical radius vector is infinite, for the work done in rotating the body about
a vertical axis is zero. The ellipsoid of the potential is therefore & right circular
cylinder with its axis vertical.

The common conjugate diameters of these two quadrics are obviously the
vertical and the two common conjugate diameters of the two ellipses in which the
diametral plane of the vertical with regard to the momental ellipsoid intersects the
momental ellipsoid and the cylinder.

The principal oscillation about the vertical conjugate is performed in an infinite
time and would therefore cause the body to depart far from the position of equi-
librium. But this is contrary to supposition. The initial axis of rotation must
therefore be in the plane of the other two conjugates, i.e. must be in the diametral
plane of the vertical with regard to the momental ellipsoid, and it will remain in
this plane throughout the whole of the subsequent motion.

Since these conjugate diameters project into the conjugate diameters of the
horizontal section of the cylinder, it is clear that two vertical planes each contain-
ing one of the principal or harmonic axes are at right angles to each other.

136. Oscillation about steady motion. Let us next sup-
pose the system to be oscillating about some state of steady motion.
To determine the motion of the representative point we must have
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recourse to the equations of motion written down in Art. 111. We
have already seen (Art. 116) that when the system is performmg
the pnnclpal osclllatlon defined by the type pt we have " =— p'r,
¥ =—p%y, 2" =—p'z. Substitute these in the equations of Art.
111. 1ﬁ‘erentmte and substitute again. Multlply by z, y, =
respectively and add the results together. Integrating this sum
we obtain

(4,7 + 24 zy + &c.) p* + (C,@" + 2C 2y + &c.) =28
where B8 is some constant. Following the same notation as before
we may write this quadric in the compendious form

Ap*—-C=8. .
The path of the representative point lies on this quadric.
Returning to the equations of motion as given in Art. 111, let
us resume the results of the substitution z” = — p*z, &c. Taking
as before the case in which there are but three co-ordinates, we
now multiply the three equations by E,, — E,,, E, respectively.
Adding the results we obtain

[(‘All 28 12E18+A13 ll)w+&c']p ’+ [(C E CISEID-I-CUEI’)W-'-&C']\:O'
This is the equation to a plane. The pa.th of the representative

point is therefore a plane section of a quadric. We infer that when
a system 18 performing a principal oscillation about a state of steady
motion the representative point describes an ellipse. The ellipse 1s
described with an acceleration tending to the centre and varying as
the dvistance therefrom. The periodic time in the ellipse i3 by defi-
nition the same as that tn which the system performs its principal
oscillation.

137. Ex. 1. Show that the three planes of these harmonio ellipses are diametral
planes of the same straight line with regard to the three quadrics represented by

-~ C=p, where p* has any one of the three values given by the determinant of
motion, The direction cosines of this straight line are proportional to Eg, — E,g E,q
and it may be called the axis of the centrifugal forces.

Ex. 2. Show that the quadric 4p?— C=8 has a common set of conjugate dia-
meters with the quadrics A=a, C=y. If the quantities E,y, E,4, E,q be all zero,
show that the first of these quadrics becomes & cylinder whose axis is one of the
three common conjugate diameters of the two latter quadrics. Hence show that
when the system oscillates about a position of equilibrium the ellipses degenerate

into straight lines.

: 138. We may notice here a distinction between the prineipal oscillations of a
system about a position of equilibrium and about a state of steady motion. In the
former the representative point describes a straight line, in the latter it describes an
ellipse. In the former the representative point, and therefore also the system, passes
through the position of equilibrium twice in each complete oscillation. In the latter
the representative point goes round the undisturbed position but does not pass
through it. Thus the position of the system in the disturbed or actual motion does
not ever coincide with the simultaneous position of the system in the steady or
undisturbed motion. The only exception is when the ellipse degenerates into &
straight line,
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‘When a system is disturbed by a small impulse from a state of steady motion it
will in general describe a compound oscillation made up of at least two principal
oscillations, At the instant of disturbance these two neutralize each other so far
that in the disturbed and steady motions two simultaneous positions are coincident.

But it is clear this ot happen again unless either the periods of the two prinei-
. pal oscillations are commensurable or the period of one of them is infinite.

139. The introduction of the representative point to exhibit the motion of the
system may appear somewhat artificial. But there is a closer connection than has yet
been mentioned. Let us transform the co-ordinates z, y, z into others ¢, 9, { by linear
relations so that Ay a2+ 24,, 2y + &e.=F3+ 93+ 2
This is the part of the Lagrangian function given in Art. 111, which contains the
squares and products of the velocities. This change may obviously be effected in an
infinite variety of ways. '

The equations of motion given in Art. 111 now take a simplified form. The
following is & specimen,

82~ (Cy 2+ Cray+Cia2)=E,;; 8y + Ey82.
These are the equations of motion of a free particle of unit mass acted on' by
(1) forces whose force function U is given by
2U=C,, 22+ 20\, 2y + &e.,
and (2) by a force which is the resultant of the three components on the right-hand
sides of the equations of motion. This force is evidently the same as that which
has been already considered in Art. 25, and there called the compound centrifugal
force. The direction cosines of the axis of the centrifugal forces are here propor-
tional to Eg, — E,4, E,,, and the rotation Q about the axis is given by
B=E'+E;3+E, %

140. Thus, when the co-ordinates are properly chosen, the problem of finding the
oscillations of a system when the Lagrangian function is known, is the same as that
of finding the motion of a free particle acted on by known forces. This is, of
course, a simpler problem because its solution may be assisted by any of the
methods of resolution of the forces usually given in treatises on dynamics of a par-
ticle.

It has already been noticed several times how sometimes the analysis of one
dynamical problem resembles that of another. We may thus replace one body by
another of more convenient shape without altering the process of solution. The use
of the Representative particle is one more illustration of this property.

A more complete account of the theory of the Representative point is given in
} the essay on the Stability of Motion already referred to.



CHAPTER 1V.

MOTION OF A BODY UNDER THE ACTION OF NO FORCES.

Solution of Euler's Equations.
141. To determine the motion of a body about a fived point,
in the case in which there are no vmpressed forces.
Euler’s equations of motion are

do

A—'—(B—G)m.w,=0
Bi’i-(a A)ow=0";
0% _(4-B)ow,=0

multiplying these respectively by o,, o,, ©,; adding and inte-
grating, we get
Ao+ Bo!+Col=T..........cvuuu..... 1),
where 7' is an arbitrary constant
Again, multiplying the equations respectively by Aml, Bw,, Co,,
we get, similarly,
A'0'+ B'ol+ Col=G".........c.uuu... (2),
where @ is an arbitrary constant.

To find a third integral, let

o'toltel=0" i, (3);
do, do, = do,_ do
Y@ O T g

then multiplying the original equations respectively by /4, /B,
o,/ 0, and adding, we get yby o /

do_(B-C,0-4 A-B
B?(A‘ B+0)
B—C)(C—A)(A—B
_( )(ABC)( ),m,m,.

(4]
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But solving the equations (1), (2), (3), we get

o, =————(A_C)(A_B).(—X,+a)’)
. cA
o, —m_—o—).(—x"i'w.) censsearesasaens (5),
1 4B 1
" =o=Byo-4) ")
TB+0O)-G

where A, = B0 , with similar expressions for A, and A,.

Substituting in equation (4), we have

dw by 2 £ )
(o—d—t=~/()x.l—(o)()~.— @*) Ay — @°) cevvereennn (6).

The integration of equation (6)* can be reduced without diffi-
culty to depend on an elliptic integral. The integration can be
effected in finite terms in two cases; when 4 =B, and when
G* = TB, where B is neither the greatest nor the least of the three
quantities 4, B, C. Both these cases will be discussed further on.

Ex. If right lines are measured along the three principal axes of the body from
the fixed point, and inversely proportional to the radii of gyration round those axes,
the sum of the squares of the velocities of their extremities is constant throughout
the motion.

142. It will generally be supposed that 4, B, C are in order of magnitude, so
that 4 is greater than B, and B than C. The axis of B will be called the axis of
mean moment. If we eliminate w; from the equations (1) and (2), we have

AT-G*=B (4-B)w3+C (4 - O)wy,
which is essentially positive. In the same way we can show that CT - G2 is nega-
tive. Thus the quantity G?/T may have any value lying between the greatest and
least moments of inertia.

The three quantities Ay, Ag, Ay in Art. 141 are all positive quantities ; for since
B+ C - A is positive, and G*/T' <4, it follows that A\, is positive. The numerators
of \, and )\, are each greater than that of \,, and are therefore positive, the denomi-
nators are also positive; hence A\, and A; are both positive. Also we have
ABC(\,=\)=(TC~-G%)(4-B), with similar expressions for \;—\y and A\g—\;.
1t easily follows that \; is the greatest of the three, and \; or ), is the least according
as 3T is greater or less than B.

1t follows from equations (5) that throughout the motion w?® must lie between A,
and the greater of the quantities \, and A,.

143. Xirchhoff's solution. The solution in terms of elliptic integrals has
been effected in the following manner by Kirchhoff, If we put
, ¢ d¢
A(g)=a1-Fsin’¢, F(¢)= 0 J/I1-1sindg’

* Euler’s solution of these equations is given in the ninth volume of the Quarterly
Journal, p. 361, by Prof. Cayley. Kirchhoff’'s and Jacobi’s integrations by elliptic
funotions are given in an improved form by Prof. Greenhill in the fourteenth
volume, pages 182 and 265. 1876. .
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then k is called the modulus of F, and must be less than uvnity if F is to be real for
all values of ¢. The upper limit ¢ is called the amplitude of the elliptic integral
F and is usually written am F. In the same way sin ¢, cos ¢, and A (¢) are written
sinam F, cos am F, and Aam F.

We have by differentiation
deoos ¢ i
L S, (1),
—aF —OOB¢EF—OOB¢A(¢) .............. ( )
dA(¢) _Ksingeospdyp _ ., .
aF 2 aF = k3 sin ¢ cos ¢
These equations may be made identical with Euler's equations if we put
F=\(t-7)and w,=aAam\(t-7) )}
wy=bBinamA(t-7)} i {2),
wg=ccosamA\ (t-17)
A-B N A4-C ™ B-C a\
T__ﬁ' _B‘——_c_a’ T-—-"k’—b—c .................. (3).

‘We have introduced here six new constants, viz. a, b, ¢, \, k and 7. With these
we may satisfy the three last equations and also any initial values of w,, w;, w;.
The solution if real will also be complete.

‘When t=7 we have from (2) v,=a, w,=0, and wg=c. Hence by Art. 141

Aa?+Cc2=T, A2+ (Cc2=G3;
= Gi-CT o= AT—G3
“4(4-0)’ —c4-0y
Dividing the second of equations (3) by the first, we bave
¥»_4-CcC, = AT-@*
a~4-BB TUTBA-B)
Multiplying the first and second of equations (3), we obtain
(4- B) (62~ CT)
ABC :

The ratios of the right-hand sides of (3) are as ¢? : 3% : k%a? and these have just
been found. Hence if the signs of a, b, ¢, A be chosen to satisfy any one of the
three equalities, the signs of all will be satisfied.

Dividing the last of equations (3) by either of the other two, we find
B-C AT-@3* 1 k,_A—C’ G2 -
4A-B Gd-CT® TV T 4B GE-cr°

If G*> BT and A4, B, C are in descending order of magnitude, the values of
a?, b%, ¢? and A? are all positive. Also k* is positive and less than unity. The
solution is therefore real and complete.

If G*< BT we must suppose 4, B, C {o be in ascending order of magnitude to
obtain a real solution. If we may anticipate a phrase used by Poinsot, and which
will be explained a little further on, we may say that the expression for w, in this
solution is to be taken for the angular velocity about that principal axis which is
“enclosed by the polhode,

If G*=BT we have k*=1and -

f# d¢ =310 l4sing . ef—e”

A=

k="

0008 I-sing’ Tre”
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Substituting in equations (2) the elliptic fanctions become exponential.

If B=C we have ¥?=0 and in this case F=¢, 8o that am F=F. If we again
substitute in equations (2) the elliptic functions become trigonometrical.

The geometrical meaning of this solution will be given a little further on.

Poinsot’s and MacCullagh’s constructions for the motion.
144. The fundamental equations of motion of a body about a

fixed point are
A0+ Bol+ Col= G.......cccuvu.e. (1),
Ao+ Bol+ Co'=T....c.ccuv.ceveenene. (2).
These have been already obtained by integrating Euler’s
equations, but they also follow very easily from the principles of
Angular Momentum, and Vis Viva.
Let the body be set in motion by an impulsive couple whose
moment is G. Then we know by Vol. 1. Chap. v1, that throughout
the whole of the subsequent motion, the moment of the momentum

.about every straight line which is fixed in space, and passes through

the fixed point O, is constant, and is equal to the moment of the
couple G about that line. Now by Art. 16, the moments of the
momentum about the principal axes at any instant are do,, Bo,,
Cw,. Let a, B, ¢y be the direction angles of the normal to the
plane of the couple @ referred to these principal axes as co-
ordinate axes. Then we have

Ao, = G cosa

Bm. =G CoSB) cereiiiiiiiiiiiiiiiien (3),

Cao,= @ cosvy
adding the squares of these we get equation (1).

Throughout the subsequent motion the whole momentum of
the body 1s equivalent to the couple @. It is therefore clear
that if at any instant the body were acted on by an impulsive
couple equal and opposite to the couple @, the body would be
reduced to rest.

145. It follows from the definition given in Vol. 1. Chap. vI.
that the plane of this couple is the Invariable plane and the
normal to it the Invariable line, This line is absolutely fixed in
space, and the equations (3) give the direction cosines of this line*
referred to axes moving in the body. i

* That the straight line whose equations referred to the moving principal axes are
2/ dw, =y/Bw,=z|Cuw, is absolutely fixed in space may be also proved thus, if we assume
the truth of equation (1) in the text. Let z, y, z be the co-ordinates of any point
P in the straight line at a given distance 7 from the origin, then each of the equali-
ties in the equation to the straight line is equal to /G and is therefore eonstant.
The actual velocity of P in space resolved parallel to the instantaneous position of
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It appears from these equations, that if the body be set in
rotation about an axis whose direction cosines are (I, m, n) when
referred to the principal axes at the fixed point, then the direction
cosines of the invariable line are proportional to Al Bm, Cn. If
the axes of reference are not the princtiEal axes of the body at the
fixed point, the direction cosines of the invariable line will, by
Art. 16, be proportional to Al — Fm — En, Bm —DDn—Fl, and
Cn— Ei — Dm, where A, F &c. are the moments and products of
inertia. .

146. Since the body moves under the action of no impressed
forces, we know that the Vis Viva will be constant throughout the
motion. We have therefore

Ao+ Bo!+ Co,'=T, ~
where T'* is a constant to be determined from the initial values
of w, w,, w,.

The equations (1), (2), (3) will suffice to determine the path in
space described by every particle of the body, but not the position
at any given time,

147. Poinsot’s construction. 7o explain Poinsot’s repre-
sentation of the motion by means of the momental ellipsoid.

Let the momental ellipsoid at the fixed point be constructed,
and let its equation be

A2’ + By' + C2* = Me'.

Let r be the radius vector of this ellipsoid coinciding with the
instantaneous axis, and p the perpendicular from the centre on
the tangent plane at the extremity of . Also let @ be the an-
gular velocity about the instantaneous axis.

The equations to the instantaneous axis are

and if (, y, 2) be the co-ordinates of the extremity of the length r,
each of these fractions is equal to r/w. Substituting in the equa-
tion to the ellipsoid, we have
(Aw’+Bw’+0w’)7:-=Me" o= T r
1 ] 8 a’. ’ b Mel € M
The equation to the tangent plane at the point (z, ¥, 2) is
Az + Byn + Czt = Mé',

g E_(B_C)w’“’}' But this is zero, by

Euler’s equation. Similarly the velocities parallel to the other axes are zero.

* It should be observed that in this Chapter T represents the whole vis viva of
the body. In treating of Lagrange’s equations in Chapter 11. it was convenient to
let T represent half the vis viva of the system. '

the axis of z is =%’;—yw,+zw,=z {A dwy
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substituting again for (z,y, z) we see that the equations to the
perpendicular from the origin are

but these are the equations to the invariable line. Hence this
perpendicular is fixed in space.

The expression for the length of the perpendicular on the

8, 3
tangent plane at (z, y, £) is known to be 117,=A 2 +LB;Z:+ = )

substituting as before we get .
1 A4%'+B»'+Ce ¥ G M

P M o MeE T

Sp=g €
From these equations we infer

(1) The angular velocity about the radius vector round which
the body 18 turning varies as that radius vector.

(2) The resolved part of the angular velocity about the per-
pendicular on the tangent plane at the extremity of the instan-
taneous axis 1s constant. This theorem is due to Lagrange.

For the cosine of the angle between the perpendicular and
the radius vector =p/r. Hence the resolve({)e angular velocity
is = p/r = T/ @, which is constant.

(3) The perpendicular on the tangent plane at the extremity
of the instantaneous axis 18 fized in direction, viz. normal to the
invariable plane, and constant in length.

The motion of the momental ellipsoid is therefore such that,
its centre being fixed, it always touches a fixed plane, and the
point of contact, being in the instantaneous axis, has no velocity.
Hence the motion may be represented by supposing the momental
ellipsotd to roll on the fixed plane with its centre fived.

148. Ex.1, If the body while in motion be acted on by any impulsive couple
whose plane is perpendicular to the invariable line, show that the momental ellipsoid
will continue to roll on the same plane as before, but the rate of motion will be
altered.

Ex. 2. If a plane be drawn through the fixed point parallel to the invariable
plane, prove that the area of the section of the momental ellipsoid cut off by this
plane is constant throughout the motion.

Ex. 8. The sum of the squares of the distances of the extremities of the princi-
pal diameters of the momental ellipsoid from the invariable line is constant through-
out the motion. This result is due to Poinsot.

Ex. 4. A bodymoves about a fixed point 0 under the action of no forces. Show
that if the surface Az?+ By?+ C2z2=M (23+y3? + 22)* be traced in the body, the principal
axes at O being the axes of co-ordinates, this surface throughout the motion will
roll on a fixed sphere.
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149. The Polhode. To assist our conception of the motion
of the body, let us suppose it so placed, that the plane of the
couple @, which would set it in motion, is horizontal. Let a
tangent plane to the momental ellipsoid be drawn parallel to the
plane of the couple @, and let this plane be fixed in space. Let
the ellipsoid roll on this fixed plane, its centre remaining fixed,
with an angular velocity which varies as the radius vector to
the point of contact, and let it carry the given body with it. We
shall then have constructed the motion which the body would have
assumed if it had been left to itself after the initial action of the
impulsive couple G*.

The point of contact of the ellipsoid with the plane on which
it rolls traces out two curves, one on the surface of the ellipsoid,
and one on the plane. The first of these is fixed in the body and
is called the polhode, the second is fixed in space and is called the
herpolhode. The equations to any polhode referred to the prin-
cipal axes of the body may be found from the consideration that
the length of the perpendicular on the tangent plane to the ellip-
soid at any point of the polhode is constant. Taking the expres-
sions for this perpendicular given in Art. 147 we see that the
equations of the polhode are

A’w’+B’y’+C’z’=MG2€

T 3.
Az + By + 02 = Mé'
Eliminating y, we have

A(4A-B)a + O(G-B)z’=(%’- B)Me‘.

Hence if B be the axis of greatest or least moment of inertia.
the signs of the coefficients of 2® and 2* will be the same, and the
projection of the polhode will be an ellipse, But if B be the
axis of mean moment of inertia, the projection is a hyperbola.

A polhode is therefore a closed curve drawn round the axis of
greatest or least moment, and the concavity is turned towards the
axis of greatest or least moment according as G*/T is greater or
less than the mean moment of inertia. The boundary line which
separates the two sets of polhodes is that polhode whose projection
on the plane perpendicular to the axis of mean moment is a

* Prof. Sylvester has pointed out a dynamical relation between the free rotating
body and the ellipsoidal top, as he calls Poinsot’s central ellipsoid. If a material
ellipsoidal top be constructed of uniform density, similar to Poinsot’s central ellip-
soid, and if with its centre fixed it bs set rolling on a perfectly rough horizontal
plane, it will represent the motion of the free rotating body not in space only, but
also in time : the body and the top may be conceived as continually moving round
the same axis, and at the same rate, at each moment of time. Thereader is referred
to the memoir in the Philosophical Transactions for 1866.
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hyperbola whose concavity is turned neither to the axis of greatest,
nor to the axis of least moment. In this case G*= BT, and the
Projection consists of two straight lines whose equation is

A(4 -B)a*—C(B-C)2*=0.

This polhode consists of two ellipses passing through the axis
of mean moment, and corresponds to the case in which the per-
pendicular on the tangent plane is equal to the mean axis of
the ellipsoid. This polhode 1s called the separating polhode.

Since the projection of the polhode on one of the principal
planes is always an ellipse, the polhode must be a re-entering
curve,

150. To find the motion of the exiremity of the instantaneous axis along the
polhode which it describes we have merely to substitute from the equations

‘31_"3_2»_2_\/?’1
z y 2 r VN

in any of the equations of Art, 141, For example we thus obtain
de _ T B-C yz BC (=),
.dt. A/ M4 & d-@d-B' ™

Ex. 1. A point P moves along a polhode traced on an ellipsoid, show that the
length of the normal between P and any one of the principal planes at the centre
is constant, Show also that the normal traces out on & principal plane a conic
similar to the focal conic in that plane. Also thé measure of curvature of an
ellipsoid along any polhode is constant.

Ex. 2. Show that the straight line OJ whose direction cosines are proportional
to dw, [dt, dw,[dt, dws/dt lies in the diametral plane of the invariable line and is
at right angles to the invariable line. Show also that the sum of the squares
of these quantities is )

= - o'+ (2Tp, - G'p)) w*[ps — {P,*T? ~ (P1Ps + Py) G*T + P, GYps",
where p,, p,, p; are the sum of the products of the quantities 4, B, C taken re-
spectively one, two and three together. '

Ex. 3. Show that the resolved pressures P, Q, R on the fixed point O in the
directions of the principal axes at O are given by

P=—wwy (4 - B) O+ wwgz (C ~ 4)[B + v, (wyy + wg2) - (w3’ + wy')2
with similar expressions for @ and R, where 2, y, z are the co-ordinates of the
centre of gravity @, and 4, B, C are the principal moments of inertia at O.

Thence show that the pressure on O is equivalent to two forces (1) a force
)'%. GK which acts perpendicular to the plane OGK, where GK is the perpendicular
drawn from G on the straight line OJ described in the last example, (2) a force
«*. GH acting parallel to GH where GH is a perpendicular from G on the instan-
taneous axis.

151. The Herpolhode. Since the herpolhode is traced out
by the points of contact of an ellipsoid rolling about its centre on a
fixed plane, it is clear that the herpolhode must always lie between
two circles which it alternately touches. The common centre of
these circles will be the foot of the perpendicular from the fixed
centre O on the fixed plane. To find the radii let OL be this

R. D. IL 6

, &o., &e., 23= +19), &e., &e.



82 MOTION UNDER NO FORCES.
perpendicular, and I be the point of contact. Let LI=p., Then

MC
we have by Art. 147, p’zr'-p'=_1,i(m’—g) .

<=

AN,
¥

The radii will therefore be found by substituting for o* its
greatest and least values. But by Art. 142, these limits are A,,
and the greater of the two quantities A, A,.

The %erolhode is not in general a re-entering curve ; but if
the angular distance of the two points in which it successively
touches the same circle be commensurable with 2w, it will be
re-entering, i.e. the same path will be traced out repeatedly on the
fixed plane by the point of contact.

152, MacCullagh’s Construction. 7o explain MacCul-
laglk’s representation of the motion by means of the ellipsoid of
gyration. :

This ellipsoid is the reciprocal of the momental ellipsoid, and
the motion of the one ellipsoid may be deduced from that of the
other by reciprocating the properties proved in the preceding
Articles. We find,

(1) The equation to the ellipsoid referred to its principal
axes is o yn 2 1

AiteroTw

(2) This ellipsoid moves so that its superficies always passes

through a pownt fized in space. The point lies in the invariable

line at a distance i from the fixed point. By Art. 142 we

know that this distance is less than the greatest, and greater than
the least semi-diameter of the ellipsoid.

(8) The perpendicular on the tangent plane at the fized point
18 the instantaneous axis of rotation, and the angular velocity of
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the body varies inversely as the length of this perpendicular. If p
bo the length of this perpendicular, then o= % o '

(4-)T The angular velocity about the invariable line 18 constant

and = .

G

The corresponding curve to a polhode is the path described on
the moving surface of the ellipsoid by the point fixed in space.
This curve is clearly a sphero-conic. The equations to the sphero-
conic described under any given initial con?litions are easily seen
to be #+¢+£—£ﬂ LA A §

: "MT'A"B C M

These sphero-conics may be shown to be closed curves round
the axes of greatest and least moment. But in one case, viz.
when G*/T'= B, where B is neither the greatest nor least moment
of inertia, the sphero-conic becomes the two central circular sections
of the ellipsoid of gyration.

The motion of the body may thus be constructed by means of
either of these ellipsoids. The momental ellipsoid resembles the
general shape of the body more nearly than the ellipsoid of gy-
ration. It is protuberant where the body is protuberant, and
compressed where the body is compressed. The exact reverse of
this is the case in the ellipsoid of gyration.

153. MaoCullagh’s geometrical interpretation. MacCullagh has used the
ellipsoid of gyration to obtain a geometrieal interpretation of the solution of Euler’s
equations in terms of elliptic integrals,

The ellipsoid of gyration moves so as always to tonch a point L fixed in space.
Let us now project the point L on a plane passing through the axis of mean
moment and making an angle « with the axis of greatest moment. This projection
may be effected by drawing a straight line parallel to either the axis of greatest
moment or least moment. We thus obtain two projections which we will call
P and Q. These points will be in a plane PQL which is always perpendicular to
the axis of mean moment. As the body moves about O the point L describes on
the surface of the ellipsoid of gyration & sphero-conic KK’, and the points P, Q
describe two curves pp', q¢’ on the plane of projection OBD. If the sphero-conic
a8 in the figure enclose the extremity 4 of the axis of greatest moment, the curve
inside the ellipsoid is formed by the projection parallel to the axis of greatest
moment, but if the sphero-conic enclose the axis of least moment, the inner curve
is formed by the projection parallel to that axis. The point P which describes the
inner curve will obviously travel round its projection, while the point Q which
describes the outer curve will oscillate between two limits obtained by drawing
tangents to the inner projection at the points where it cuts the axis of mean
moment,

Since the direction-cosines of OI. are proportional to 4w,, Bw,, Cw, it is easy to
see that, if z, y, z are the co-ordinates of L,

z Y z r 1
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Let OP=p;, 0Q=/', and let the angles these radii vectores make with-the plane
‘oontaining the axes of greatest and least moment be ¢ and ¢' measured in the

-direction BD so that DOP= - ¢, DOQ= - ¢': we then have
— psin g=y = Buy (MT)-}

pcos psin a=2 = Cwg (MT)-}

pcos ¢’ cosa=z=Aw, (MT)-}

-psing’  =y=Buwy(MT)-4
It is proved in treatises on solid geometry that, if the plane on which the’
projection is made is one of the circular sections of the ellipsoid, the projections
will be circles. This result may be verified by finding p or p' from these equations,

Remembering that p and p’ are constants, let us substitute in Euler’s equation

du, _
B~ (C- 4) ay,=0

from (2) and the first of equations (3). We have
dp A-C
P £= Tl NMT pp' 5in a cos a cos ¢,
Since p’ cos ¢’ is the ordinate of Q, we see that the velocity of P varies as the
ordinate of Q, and in the same way the velocity of Q varies as the ordinate of P,
To find the constants p, p' we notice that p is the value of y obtained from
the equations to the sphero-conic when z=0. We thus hatve
, (AT-@%B , (G*-CT)B
FP=MT(a-By ° ~"MT(B-0)'
the latter being obtained from the former by interchanging the letters 4 and C.
veloaity\ _ W/B=C j=r—n (ordinate '
Hence ( of P )- N7 i, NAT-@G of @ ),
(veloclty _Af4-B JE_OT (ordmate) .

ofQ /= JaBC of P




. STABILITY OF ROTATION. - 85

- 7154, 8Ince p'sin ¢’=psin ¢, we have by substitution -

d .
. g—)\,\/ 1—%sm’¢,

where A2 has the same value as in Art. 113, Let us suppose ¢ expressed in terms
of ¢ by the elliptic integral ’

)‘(t"r)=f’ i ’
0 1—£8i11’¢

P2
80 that ¢=am\ (t-7). Substituting this value of ¢ in equations (2) or (3), we
obtain the values of w;, w,, w; expressed in terms of the time, -

155. Stability of Rotation. If a body be set in rotation
about any principal axis at a fixed point, it will continué to rotate
about that axis as a permanent axis. But the three. principal
axes at the fixed point do not possess equal degrees of stability.
If any small disturbing cause act on the body, the axis of rotation
will be moved into a neighbouring polhode. ~If this polhode be a
small nearly circular curve enclosing the original axis of rotation,
the instantaneous axis will never deviate far in the body from the
principal axis which was its original position. The herpolhode also
will be a curve of small dimensions, so that the principal axis will
never deviate far from a straight line fixed in space. In this case
the rotation is said to be stable. But if the neighbouring polbode
be not nearly circular, the instantaneous axis will deviate far from
its original position in the body. In this case a very small dis-
turbance may produce a very great change in the subsequent
motion, and the rotation is said to be unstable. '

If the initial axis of rotation be the axis OB of mean mo-
ment, the neighbouring polhodes all have their convexities turned
towards B. Unless, therefore, the cause of disturbance be such
that the axis of rotation is displaced along the separating polhode,
the rotation must be unstable. If the displacement be along the
separating polhode, the axis may have a tendency to return to ‘its
original position. This case will be considered a little further on,
and for this particular displacement the rotation may be said to
be stable. =~ =~ o .

If the initial axis of rotation be the axis of greatest or least
moment, the neighbouring polhodes are ellipses of greater or less
eccentricity. If they be nearly circular, the rotation will certainly
be stable; if very elliptical, the axis will recede far from its initial
position, and the rotation may be called unstable. If OC be the
axis of initial rotation, the ratio of the squares of the axes of the
A(4-0)
B(B-0)’
necessary for the stability of the rotation that this ratio should not
differ much from unity. :

neighbouring pblhode is ultimately It is therefore

156. Itiswell known that the steadiness or stability of a moving
body is much increased by a rapid rotation, about; & principal axis.
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The reason of this is evident from what precedes. If the body
be set rotating about an axis very near the ‘f;rincipa.l axis of
greatest or least moment, both the polhode and herpolhode will
generally be very small curves, and the direction of that principal
axis of the body will be very nearly fixed in space. If now a
small impulse f act on the body, the effect will be to alter slightly
the position of the instantaneous axis. It will be moved from one
polhode to another very near the former, and thus the angular
position of the axis in space will not be much affected. Let Q
be the angular velocity of the body,  that generated by the im-
pulse, then, by the parallelogram of angular velocities, the change
in the position of the instantaneous axis cannot be greater than
sin™ (w/Q2). If therefore () be great, » must also be great, to produce
any considerable change in the axis of rotation. %rut if the body
have no initial rotation (2, the impulse may generate an angular
velocity @ about an axis not nearly coincident with a principal
axis. Both the polhode and the herpolhode may then be large
curves, and the instantaneous axis of rotation will move about
both in the body and in epace. The motion will then appear
very unsteady. In this manner, for example, we may explain
why in the game of cup and ball, spinning the ball about a ver-
tical axis makes it more easy to catch on the spike. Any motion
caused by a wrong pull of the string or by gravity will not produce
so great a change of motion as it would have done if the ball had
been initially at rest. The fixed direction of the earth’s axis in
space is also dué to its rotation about its axis of figure. In rifles,
a rapid rotation is communicated to the bullet about an axis in
the direction in which the bullet is moving. It follows, from
what precedes, that the axis of rotation will be nearly unchanged
throughout the motion. One consequence is that the resistance
of the air acts in a known manner on the bullet, the amount of
which may therefore be calculated and allowed for.

On the Cones described by the Invariable and Instantaneous Axes
' treated by Spherical Trigonometry. =~

157, There are various ways in which we may study the
motion of a body about a fixed point. We may have recourse to
the properties of an ellipsoid as Poinsot and MacCullagh have
done, But we may also use a sphere whose centre is at the fixed
point and which is either fixed in the body or fixed in space at our
pleasure. This method is particularly useful when we wish to find
the angular motion of any line in space or in the body. By
referring these angles to arcs drawn on the surface of the sphere
we are enabled to shorten our processes by using such formule of
spherical trigonometry as may suit our purpose.

The cones described by the invariable line and the instanta-
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neous axis intersect this sphere in sphero-conics. The properties
of such cones are not usually given with sufficient fulness in our
treatises on solid geometry. E§o1r this reason we have added a list
of several properties likely to be useful. In order not to interrupt
the general line of the argument this list has been placed at the

end of the chapter.

158. It is clear from what precedes that there are two im-
portant straight lines whose motions we should consider. These
are the invariable line and the instantaneous axis, The first of
these is fixed in space, but as the body moves the invariable line
describes a cone in the body, which by Art. 152 intersects the
ellipsoid of gyration in a sphero-conic. This cone is usually called
the Invariable Cone. The instantaneous axis describes both a
cone in the body and a cone in space. By Art. 147, the cone de-
scribed in the body intersects the momental ellipsoid in a polhode,
and the cone described in space intersects the fixed plane on
which the momental ellipsoid rolls in a herpolhode. These two
cones may be called respectively the instantaneous cone and the
cone of the herpolhode.

159. 'The Cones. Let the principal axes at the fixed point
be taken as the axes of co-ordinates. The axes of reference are
therefore fixed in the body but moving in space. By Art. 144,
the direction-cosines of the invariable line are dw,/@, Bo,/G,
Co,/G; and the direction-cosines of the instantaneous axis are
o,/w, ®./o, o,/o. From the equations (1) and (2) of Art. 144, we
easily find

(do!+ Bo! + Co,) G = (4’0, + B'o} + (") T.

If we take the co-ordinates , y, 2 to be proportional to the
direction-cosines of either of these straight lines and eliminate w,,
w,, », by the help of this equation, we obtain the equation to the
corresponding cone described by that straight line. In this way
we find that the cones described in the body by the invariable
line and the instantaneous axis are respectively

AT-G , BT-@ cr- @
T '+ B v+ 0 2'=0,

A(AT—-@)a* + B(BT— G y*+C(CT— G*) = 0.

These cones become two planes when the initial conditions are
such that G*=BT. ‘

Ex. 1, Show that the circular sections of the invariable cone are parallel to
those of the ellipsoid of gyration and perpendicular to the asymptotes of the focal
conic of the momental ellipsoid.

160. There is a third straight line whose motion it is sometimes convenient to
consider, though it is not nearly so important as either the invariable line or the
instantaneous axis. If z, y, z be the co-ordinates of the extremity of a radius vector
of an ellipsoid referred to its principal diameters as axes and if a, b, ¢ be the semi-
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axes, the straight line whose direction-cosines are z/a, y/b, z/c is called the eccentrio-
line of that radius vector. Taking this definition, it is easy to see that the direc-
tion-cosines of the eccentric line of the instantaneous axis with regard o the
momental ellipsoid are w, /4/T, wy /B[T, wy o/C|/T. These are also the direction-
cosines of the eccentric line of the invariable line with regard to the ellipsoid of
gyration, This straight line may therefore be called simply the ecoentric line and
the cone described by it in the body may be called the eccentric cone.

Ex. 1. The equation to the eccentric cone referred to the principal axes at the
fixed point is (AT- G2+ (BT - 6"y +(CT - G%) £*=0.

‘This cone has the same circular sections as the momental ellipsoid and cuts that
ellipsoid in a sphero-conic.

Ex. 2. The polar plane of the instantaneotts axis with regard to the eccentric
cone touches the invariable cone along the corresponding position of the invariable
line. Thus the invariable and instantaneous cones are-reciprocals of each other
with regard to the eccentrio cone.

161. ‘The sphero-conics. Let a sphere of radius unity be
described with its centre at the fixed point O about which the
body is free to turn. Let this sphere be fixed in the body, and
therefore move with it in space. Let the invariable line, the
instantaneous axis, and the eccentric line cut this sphere in the
points L, I, and E respectively. Also let the principal axes cut
the sphere in A4,B, C. It is-clear that the intersections of the
invariable, instantaneous, and eccentric cones with this sphere will
be three sphero-conics which are represented in the figure by the

lines KK', JJ', DD, respectively. The eye is supposed o be
situated on the axis OA, viewing the sphere from a considerable
distance. All great circles on the spEere are represented by
straight lines. Since the cones are co-axial with the momental
ellipsoid, these sphero-conics are symmetrical about the principal
planes of the body. The intersections of these principal planes
with the sphere will be three arcs of great circles, and the portions

D SN
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of these arts cut off by any sphero-conic are cilléd axes of that
sphero-conic. If we put z=0 in the equations to any one of the
three cones, the value of y/x is the tangent of that semi-axis of the
sphero-conic which lies in the plane of zy. Similarly, putting
y =0, we find the axis in the plane of az. If (a, d), (@, b'), (a, B)
be the semi-axes of the invariable, instantaneous, and eccentric
sphero-conics respectively, we thus find

tana_tana’ tana JAT-G 1
B4 JiB JF_BT JAB’
tanb=tanb’_t3nﬁ_JAT_ F 1
¢ 4 Jav JF-crJ/ac
The first of these two sets gives the axes in the ﬁlane.AOBf,
the second those in the plane A OC. The former will be imagi-
nary if G* < BT. In this case the sphero-conics do not cut the
plane AOB, The sphero-conics will therefore have their con-
cavities turned towards the extremities of the axes 04 or OC, i.e.

towards the extremities of the axes of greatest or least moment
according as G" is > or < BT.

162. Ex.1. If we put 1 e8=sin%/sin% we may define ¢ to be the eccentricity
of the sphero-conic whose semi-axes are a and b. If e and ¢ be the eccentricities of
the invariable and eccentric sphero-conics respectively, prove that

¢*=4(B- C)/B(4-C) and ¢*=(B-C)|(4 - C)
so that both these eccentricities are independent of the initial eonditions.

Ex. 2. If the radius of the sphere had been taken equal to (G3/M T)} instead of
unity, show ths.t it would have intersected the ellipsoid of gyration along the invari-
able cone, and if the radius had been (M7Te4/G?), it would have intersected the
momental ellipsoid along the eccentric cone. :

Ex. 3. A body is set rotating with an initial angular velocity n about an axis
whioh very ‘nearly coincides with a principal axis OC at a fixed point O. The
motion of the instantaneous axis in the body may be found by the following
formule. Let a sphere be described whose centre is O, and let 7 be the extremity
of the radius vector which is the instantaneous axis at the time t. If (z, y) be the
co-ordinates of the projection of I on the plane 40B referred to the principal axes

04, OB, then z=/B(B-C) L sin (pnt+ M),

y= A4~ C) L oos (pnt + M),
where p?*=(B -~ C) (4 - C)/4B, and L, M are two arbitrary constants depending on
the initial values of z, y. .

Ex. 4, If in the last question L be the point in which the sphere cuts the
invariable line, if (p, 6) be the spherical polar. co-ordinates of C with regard to
L asg origin, and a the radius of the sphere, then

AB T, 6 CT-G* fa¥dt
pP'=nt5m L* {24B - C (4 + B)+ (4 -B) Ccos2 (pnt+ M)}, 0= t+—Fm— -
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163. To find the motion of the tnvariable line and the instan-
taneous axis in the body.

Since the invariable line OL is fixed in space and the body
is turning about OI as instantaneous axis, it 18 evident that the
direction of motion of OL in the body is perpendicular to the

lane JOL. Hence on a sphere whose centre is at O the arc IL
18 normal to the sphero-conic desoribed by the invariable line. This
simple relation will serve to connect the motions of the invariable
line and the instantaneous axis along their respective sphero-
conics,

164. Let v be the velocity of the invariable line along its
sphero-conic, then since the body is turning about O with an-
gular velocity w, and OL is unity, we have v =wsin LOI. But
by Art. 147 T/G =wcos LOI. Eliminating @ we have

‘ v=(T/@) tan LOL

165. Produce the arc IL to cut the axis AK in N, so that
LN is a normal to the sphero-conic described by the invariable
line. Taking the principal axes at the fixed point O as axes of
reference, the direction-cosines of OL and O are respectively
proportional to dw,, Be,, Co,, and ,, ®,, »,. The equation to
the plane LOI is

B-0)woz+(C-A)owy+(4—B)wwe=0.

This plane intersects the plane of @y in the straight line ON,
hence putting z=0, we find the direction-cosines of ON to be
proportional to (4 —~C)w,, (B— C)w,, and 0. Hence

_ 3 _ 2
cosL0N=A (4-0)a’+B(B—0)o, .
GJ(A-C) o'+ (B-C)o}
The numerator of this expression is easily seen to be G* — CT.
Expanding the quantity under the root we have ,
A'o'+ B'o)! - 20 (do,'+ Bo) + C* (0, + o)),
which is clearly the same as
F - Co-20T-CoN+C (0" —o,).
Substituting we find

G-0T
LON = —_—
o8 GVGF—20T+ 00"
CV@o' - T
. tan LON= —G,——_‘—C—I,— .

But T/G=wcos LOI, .. Ttan LOI =¥ GPo*— I". Hence the

. tanLOI G*-OT .
ratio WnLON— T ’ and 18 therefore constant throughout

the motion.
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Combining this result with that given in the last Article, we

see that the @ T

velocity of L -

along its conic} =~cg "%
where n is the angle LON, If we adopt the conventions of
spherical trigonometry, n is also the length of the arc mormal to
the sphero-conic intercepted between the curve and the principal
plane 4B of the body.

166. Ex. 1. If the focal lines of the invariable cone cut the sphere in 8 and §',
these points are called the foci of the sphero-conio, Prove that the velocity
of L resolved perpendicular to the arc SBL is comstant throughout the motion and
equal to }(G*-BT) (AT~ G%)/ABG3}}, 1f LM be an arc of a great circle perpen-
dicular to the axis containing the foci, and p be the arc SZ, prove also that

[}
g G40 B O .
Ex. 3. Prove that the velocity of L resolved perpendicular to the central radius
. AT-@
vector AL is =G cot AL.

Ex. 3, If», 7, ¥ be the lengths of the arcs joining the extremity 4 of a princi-
pal axis to the extremities L, I, E of the invariable line, instantaneous axis, and
ecoentrio line respectively; 6, ¢, 8” the angles these arcs make with any principal
plane 40B, prove that

cosr  cosr _ cosy”’ tang _tan ¢’ tang”

AT ~ Gioos ¢ G, JAT’ T—T_ﬁ_?’
where {=arcLI. This theorem will enable us to discover in what manner the
motions of the three points L, 7, E are related to each other,

Ex. 4, Show that the velocity of the instantaneous axis along its sphero-conio
is —g- 6%' tan n’ cos §, where n’ is the length of the normal to the instantaneous
sphero-conie intercepted between the curve and the arc 4B, and ¢=arc LI,

Comparing this result with the corresponding formula for the motion of L given
in Art. 165, we see that for every theorem relating to the motion of L in its sphero-
conic there is a corresponding theorem for the motion of 7. For example, if S’ be a
focus of the instantaneous sphero-conic, we see by Ex. 1 that the velocity of I
resolved perpendicular to the focal radius vector S’I bears a constant ratio to cos LI.
This constant ratio is equal to that given in Ex. 1 multiplied by G3C/TAB.

Ex. 5. Show that the velocity of the eccentric line along its sphero-conic is
{(G3- CT)/JJABCT} tan n”, where n” is the length of the arc normal to the sphero-
conic intercepted between the curve and the principal arc AB.

Ex. 6. Prove that (velocity of £)*— (velocity of L)3=constant. Show also that
this constant= (4T - G?) (BT - G%) (CT - G%)/ABCGST.

Ex. 7. The motion of L along its sphero-conic is the same as that of a particle
acted on by two forces whose directions are the tangents at L to the arcs LS, LS’
joining L to the foci of the sphero-conic and whose magnitudes are respectively
proportional to sin LS cos LS’ and sin LS’ cos LS.

Solutions of these examples and proofs of other theorems in this section may
be found in a paper contributed by the author to the Proceedings of the Royal
Society, 1873.
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167. The instantaneous axis describes a cone in space, which
has been called the cone of the herpolhode. The equation of
this cone cannot generally be found, but when it can be determined
we have another geometrical representation of the motion. For
suppose the two cones described by the instantaneous axis in
space and in the body to be constructed. Since each of -these
cones will contain two consecutive positions of their common
generator, they will touch each other along the instantaneous
axis. Then the points of contact having no velocity the motion
will be représented by making the cone fixed in the body rell on
the cone fixed in space.

168. Poinsot’s theorem. To find the motion of the instan~
taneous axis in space.

Since the invariable line OL is fixed in space, it will be con-
venient to refer the motion to OL as one axis of co-ordinates.
Let the angle the instantaneous axis O makes with OL be called
£, and let ¢ be the angle the plane JOL makes with ~any plane
passing through OL and fixed in space. '

During the motion the cone described by OI in the body rolls
on the cone described by OI in space. It 18 therefore clear that
the angular velocity of the instantaneous axis in space is_the
same as its angular velocity in the body. Describe a sphere
-whose centre is at O and radius unity, and let this sphere be
fixed in the body. Let L, I be thé intersections of the invariable
line and instantaneous axis with the sphere at the time ¢, L, I
their intersections at the time ¢ +dt. Then IL, I'L’ are con-
secutive normals to the ‘sphero-conic KK’ traced out by.the in-
variable line and therefore intersect each other in some point P

P

which may be regarded as a centre of curvature of the sphero-
conic, Let p= =PL. Then clearly

velocity of I resolved} _ (velocity) sin (p + &)
perpendicularly to ILj \ of L /° sinp -
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" Therefore by Art. 164 we have

sin {Z—?=%t&n§(cos{+ cot psin §);

T tat)

But in any sphero-conic tan p = tan®n/tan'l, where n is the
length of the normal intercepted between the curve and that axis
which contains the foci, and 2! is the length of the ordinate
through either focus, and is usually called the latus rectum.
Substituting for tan p, and remembering that

tan -Cr . tan®*d
tan5= oT , by Art. 16o,andtanl=taTa,weget
dp T T /(G —CT\ (tan’b\*
5 -ete("or ) (ag) 't

If we substitute for tan a and tan b their values, we get

db T (AT—@") (BT—G)(CT—@") .,
d_f=§+ ABOGT: cot’ &

169. A simple geometrical construction for this result has
been given by Dr Ferrers in a Smith’s Prize paper (1882). If
OH be the projection of the instantaneous axis OI on the in-
variable plane drawn through the fixed point O, and if OH in-
tersect the momental ellipsoid in H, then

dp @M 1
dt ~ TABC OH**

170. Since the resolved angular velocity about the invariable
line is constant, we easily find w=sec{ 7/@. Substituting this
value of @ in equation (6) of Art. 141, we find a relation between
¢ and d¢/dt, which however is too complicated to be of much use.

The values of dp/dt and d¢/dt in terms of ¢ have now both been
found; from these the motion of the instantaneous axis in space
can be deduced.

171. Ex. 1, Show that the angular velocity v’ of the instantaneous axis in

. . . ™ G\ AN .
space or in the body is given by wiv':ABC A+B+C-2 v d ,Where wis
the resultant angular velocity of the body and \;, A;, \; have the meanings given
to them in Art. 141. This result is due to Poinsot.

Ex. 2. The length of the spiral between two of its successive apsides, described
in absolute space, on the surface of a fixed concentric sphere, by the instantaneous
axis of rotation, is equal to a quadrant of the spherical ellipse described by thé same
axis on an equal sphere moving with the body. This is Booth’s Theorem.
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Ex. 8. If the eocentric line intersect in the point E the unit sphere which is
fixed in the body and has its centre at the fixed point, prove that
velocity\* T d¢
( ofE )G ar ™'
where the letters have the meanings given to them in Art. 168,

172. 'The Rolling and Sliding Cone. Let O be the fixed
point, OI the instantaneous axis. Let the angular velocity
about OI be resolved into two, viz. a uniform angular velocity 7/G
about the invariable line OL, and an angular velocity  sin JOL
about a line OH lying in a plane fixed in space perpendicular to
the invariable line, and passing through the fixed point O. Let
this fixed plane be called the invariable plane-at 0. As the bod
moves, OH will describe a cone in the boJ;' which will always touci
this fixed plane. The velocity of any point of the body lying for a
moment in OH is unaffected by the rotation about OH, and the
point has therefore only the motion due to the uniform angular
velocity about OL. We have thus a new representation of the
motion of the body. Let the cone described by OH in the body
be constructed, an({ let it roll on the invariable plane at O with the
proper angular velocity, while at the same time this plane turns
round the invariable line with a uniform angular velocity 7'/ G.
The cone described by OH in the body has been called by Poinsot
the Rolling and Sliding Cone.

173. To find a construction for the sliding cone. Its generator
OH is at right angles to OL, and lies in the plane JOL. Now
OL is fixed 1n space; let OL’ be the line in the body which, after
an interval of time dt, will come into the Position OL. Since the
body is turning about O, the plane LOL’ is perpendicular to the
plane LOI, and hence OH is perpendicular to both OL and OL'.
That is, OH is perpendicular to the tangent plane to the cone
described by OL in the body. The cone gescribed by OH in the
body is therefore the reciprocal cone of that described by OL.
The equation to the cone described by OL has been found in Art.
159. Turning therefore its coefficients upside down we see that
the equation to the cone described by OH is

A B C
-G -Vt or- @

The focal lines of the cone described by OH are perpendicular
to the circular sections of the reciprocal cone, that is the cone
described by OL. And these circular sections are the same as
the circular sections of the ellipsoid of gyration. Hence the focal
lines lie in the plane containing the axes of greatest and least
moment, and are independent of the initial conditions.

This cone becomes a straight line in the case in which the
cone described by OL becomes a plane, viz. when the initial con-
ditions are such that G*= BT. .

2=0.
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174.  To find the motion of OH in space and in the body.

Since OL. OH and OI are always in the same plane the
motion of OH in space round the fixed straight line OL is the
same as that of O and is given by the expression for d¢/dt in
Art. 168.

To find the motion of OH in the body it will be convenient
to refer to the figure of Art. 168. Produce the arcs PL, PL'
to H and H' so that LH and L'H’ are each quadrants. Then
H and H are the points in which the axis OH intersects the
unit sphere at.the times ¢ and ¢+ dt. We have therefore

velocit velocity\ sin(p+3mw) T
(o) =("efz")- %npé—)‘?““‘ feotip.

Substituting for tan p as before we may express the result in
terms of { or @ at our pleasure.

Since the cone described by OH in the body rolls on a plane
which also turns round a normal to itself at O, it is clear that the
angular velocity of OH in the body is less than the angular
velocity of OH in space by the angular velocity of the plane, 1.e.

velocity\ d¢ T
(ore’)=% -5
176. Ex. If I, m, n be the direction-cosines of OH referred to the principal
axes of the body, prove

I m [ 1
AT-w,” (BT-Gw, (CT-@)wy G JGa-1T

Motion of the Principal Azes.

176. To find the angular motions in space of the principal
azes.

Since the invariable line OL is fixed in space it will be con-
venient to refer the motion to this straight line as axis of =z.
Let 04, OB, OC be the principal axes at the fixed point O, and
let, as before, a, B, «.be their inclinations to the axis OL or OZ.
Let A, p, v be the angles the planes LOA, LOB, LOC make
with some fixed plane LOX passing through OL. Our object is
to find da/dt and d\/d¢ with similar expressions for the other axes.
We might here refer to Euler's geometrical equations given in
Vol. 1. chap. 5 and by writing a, A for 6, 4 respectively obtain the
required expressions, but it will be found advantageous to make a
slight variation in the argument.

Describe a sphere whose centre is at the fixed point, and
whose radius is unity. Let the invariable line, the instantaneous
axis and the principal axes cut this sphere in the points L, I,
4, B, C respectively. The velocity of A resolved perpendicular
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to LA will then be sina dA/dt. But since the body is. turning
round O as instantaneous axis, the point 4 is moving perpen-
dicularly to the arc 14, and its velocity is wsin J4A. Resolving
this perpendicular to the arc L4, we have

sina 2 = o sin AT cos LAI
_ cosLI—cosLAcosIA
=® sin L4 '
by a fundamental formula in spherical trigonometry. But @ cos LI

is the resolved part of the angular velocity about OL, which is
equal to T/@, and wcosJA is the resolved part of the angular

C

B A

velocity about 04, which is . We have therefore

.q d\_ T
sin*a — = 7y — w, co8 g,

a
a result which follows immediately from Art. 12. Since Gcosa=Aw,,
we have AT G
.9 dA_T Geos'a
sin'a =15 5 R ITIILIP TP (1).

This result may also be written in the form
dn T AT-@& :
7‘ = ‘a +Tcot’a .................... (2)

177. To ﬁnd%’tf we may proceed in the following manner.

By Art. 144, we have cosa = 4o, /@, cos 8= Bw,/G, cosy=_Co,/G.
Substituting in Euler’s equation

d
A%—-(B— 0) w0, =0,

. d 1 1
we have sina E; = (1—2 - -C,) GcosBcosy..uenn.en... (3).
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But by Art. 141 cos a, cos B3, cos y are connected by the equations

cos’a  cos’B  cos'y T
A T3 T TE v (4).
cos'a+ cos* B+ cosy=1

If we solve these e%uatlons 80 as to express cos 8, cosy in
terms of cosa, we easily fin

sin’a(%a)’=——(m CT _ A C ) G- BT-A—Boos’a) 6).

178. Since the left-hand side of equation (5) is necessarily real, we see that the
values of cos?a are resiricted to lie between certain limits. If the axis whose
motion we are considering is the axis of greatest or least moment let B be the
axis of mean moment. In this case cos®a mmust lie between the two limits
@t 2 ana FPT 4 it both bo positive. By Art. 142 the former of
these two is positive and less than unity; this is easily shown by dividing the
numerator and the denominator by ACG* If the latter is positive the spiral
deseribed by the principal axes on the surface of a sphere whose oentre is at the
fixed point lies between two concentric circles which it alternately touches. If the
latter limit is negative cos a has no inferior limit. In this case the spiral always
lies between two small circles on the sphers, one of which is exactly opposite the
other,

If the axis considered is the axis of mean momen$, cos®a must lie outside the
same two limits as before. Both these are positive, but one is greater and the
other less than unity. The spiral therefore lies between two small circles opposite
each other.

In order that d\[dt may vanish we must have G?cost a == 4 T, bat this by substitu.
tion makes dafdt imaginary, Thus d\/dt always keeps one sign, It is easy to see
that if the initial eonditions are such that G3/T is less than the moment of inertia
about the axis which describes the spiral we are considering, the angular velocity
will be greatest when the axis is nearest the invariable line and least when the axis
is furthest. The reverse is the case if G/T is greater than the moment of inertia.

179. Ex. 1. Let OM be any straight line fixed in the body and passing
through O and let it cut the ellipsoid of gyration at O in the point M. Let OM’ be
the perpendicular from O on the tangent plane at M. If OM=r, OM’'=p, and if
i, i’ be the angles OM, OM’ make with the invariable line OL, prove that

gin?4 —_.1—1- g cos 1 cos 1/,
)
mpr

where j is the angle the plane LOM makes with some plane fixed in space passing
through OL and m is the mass of the body. This follows from Art. 12.

Ex. 2. If KLK'be the conic traced out by the invariable line in the manner
described in Art. 161, show that A=(T/G) t + (angle LAK) — (vectorial area LAK),
where \ is the angle described by the plane containing the invariable line and the
principal axis OA.

Ex. 3. If we draw three straight lines 04, OB, OC along the prineipal axes at
the fixed point Q of equal lengths, the sum of the areas conserved by these lines on
the invariable plane is proportional to the time. [Poinsot.]

R.D. IL 7
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Ex, 4. I the lengths 04, OB, OC be proportional to the radii of gyration
about the axes respectively, the sum of the areas conserved by these lines on the
invariable plane will also be proportional to the time. [Poinsot.]

Motion of the body when two principal axes are equal.

180. Let the body be rotating with an angular velocity o
about an instantaneous axis OL iet OL be the perpendicular
on the invariable plane. The momental ellipsoid is in this case a
spheroid, the axis of which is the axis of unequal moment in the
body. Let the equal moments of inertia be A and B. From
the symmetry of the figure it is evident that as the spheroid rolls
on the invariable plane, the angles LOC, LOI are constant, and
the three axes O, OL, OC are always in one plane. Let the angles
LOC =+, 100 =1.

Following the same notation as in Art. 141, we have

0,=® cos 1, o'+ o, =o"sin",
@ =(4*sin’t + C* cos’) o',
T = (4 sin’t + C cos’?) ",
We therefore have
cosy = Co, _ Ccost
YT @ T A i+ oo

This result may also be obtained as follows. In any conic if
1 and o be the angles a central radius vector and the perpendicular
on the tangent at its extremity make with the minor axis, and if
a, b be the semi-axes, then tany=tan¢.b%a’. Applying this to
the momental spheroid, we have

tan«y::%tan 1.

The angle ¢ being known from the initial conditions, the angle «
can be found from either of these expressions. The peculiarities
of the motion will then be as follows.
The invariable line describes a right cone in the body whose
axis is the axis of unequal moment, and whose semi-angle is .
The instantaneous axis describes a right cone in the body

whose axis is the axis of unequal moment, and whose semi-angle

is 7. .

The instantaneous axis describes a right cone in space, whose
axis is the invariable line, and whose semi-angle is © ~¢.

The axis of unequal moment describes a right cone in space
whose axis is the invariable line, and whose semi-angle is «.

The angular velocity of the body about the instantaneous
axis varies as the radius vector of the spheroid, and is therefore
constant.
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181. “ To find the common angular velocity in space of the in-
stantaneous axis and the azxis of unequal moment round the invariable
line. :

Let C be the extremity of the axis of figure of the momental
ellipsoid, and let 2 be the rate at which the plane LOC is turnin
round OL. Let CM, CN be perpendiculars on OL and -Ol.
Then since the body is turning round OI, the velocity of (7 is
CN.w. But this is also CM.Q. Since CM = OCsin vy,
CN =0Csint, we have at once

. Qsiny=wsint,
whence  can be found.

182. To find the common angular velocity in the body of the

invariable line and the instantaneous axis round the axis of unequal
moment. . n . : o . .

Let Q' be the rate at which the plane LOC is turning round
OC in the body. Let LM, LN be perpendiculars from any point
L in the invariable line on OC and OI. Then since OL is fixed
in 8 and the body is turning round O, the velocity of L in
the body is LN .. But this is also LM .Q'. Since LM =OLsiny,
LN = OLsin (¢~ ), we have at once

Q' sin y=wsin (¢ —«),
whence £’ can be found. :

183, Ex. 1. If a right circular cone whose altitude a is double the radius of
its base turn about its centre of gravity as a fixed point, and be originally set in
motion about an axis inclined at an angle a to the axis of figure, the vertex of the
cone will describe a circle whose radius is 2a sina. [Coll. Exam.]

Ex. 2. A circular plate revolves about its centre of gravity as a fixed point. If
an angular velocity w were originally impressed on it about an axis making an angle
a with its plane, a normal to the plane of the disc will make a revolution in space in

a time 7 given by 2x/r= wJ 1+3sin?a, [Coll. Exam.]
Ex. 3. A body which can turn freely about a fixed point at which two of the

principal moments are equal and less than the third, is set in rotation about any -

axis. Owing to the resistance of the air and other causes, it is continually acted
on by a retarding couple whose axis is the instantaneous axis of rotation and whose
magnitude is proportional to the angular velocity. Show that the axis of rotation
will continually tend to become coincident with the axis of unequal moment, In
the case of the earth therefore, a near coincidence of the axis of rotation and axis
of figure is not a proof that such coincidence has always held. [Astronomical
Notices, March 8, 1867.]

Motion when G* = BT.

184. The peculiarities of this case have been already alluded,
to in Art. 141. When the initial conditions are such that this
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relation holds between the Vis Viva and the Momentum of the
body the whole discussion of the motion becomes more simple*.

The fundamental equations of motion are
Ao+ Bo'+ Col=T }
Ao+ B'o'+ Cw,'= G = BT
Solving these, we have
= B-C G- Bw,
T A4-C° 4B
\ A—B @ Bap] e (2).
" =4-C " BC
But %:—’ = 0; 4 0,0,
. do, . [A-B)(B-0) &-Bo;
tdt AC ‘B
When the initial values of o, and o, have like signs, (0 A)o,wo,
is negative and therefore dw,/dt must be negative, hence in this

expression the upper or lower sign is to be used according as the
initial values of w,, @, have like or unlike signs.

B do,__ [(d-B)(B-C)
' @P- B dt — 40

If we put F n for the right-hand side and integrate we have

s
———Jg-*-gm E. 3*!§“‘p e B?w’=E‘—: 6*’2“_1 ’
Bt E.e"8%+1

where E is some undetermined constant. As ¢ increases indefi-
nitely, o, approaches F G/B as its limit and therefore by (2) w
and o, approach zero,
" The conclusion is that the instantaneous axis ultimately ap-
roaches to coincidence with the mean axis of principal moment,
Eut never actually coincides with it. It approaches the positive
* or negative end of the mean axis according as the initial value
of (C — A) m,w, is positive or negative.

185. To find what the cones traced out in the body by the
invariable line and instantaneous axis become when G* = BT.

Eliminating o, from the fundamental equatlons of the last
Article we have A (d-B)or=0(B-C0)aw,

Taking the principal axes at the fixed pomt as axes of refer-
ence, the equations of the invariable line are #/ Aw,= y/Bw,= z/Cw,.

. * This case appears to have been considered by nearly every writer on this
ot shb]eet As examples of different methods of treatment the reader may consult
< 3::.,.Legendr¢, Traité des Fonctions Elliptiques, 1825, Vol. 1. page 382, and Poinsot,
* °  Théorie Nouvelle de la Rotation des corps, 1852, page 104
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Eliminating o, and w, the locus of the invariable line is one of

the two planes }\/A—Bw__'_\/B—-C",
4 7= c -
The equations of the instantaneous axes are #/w, = y/w, = 2/w,.
Eliminating @, and o, the locus of the instantaneous axis is one
of the two planes

JAA-Byz=+JC(B=0)z

In these equations since z/z follows the sign of w,/w, the upper
or lower sign is to be taken according as the initial values of
®,, o, have like or unlike signs. These planes pass through the
mean axis, and are independent of the initial conditions except
so far that G* = BT.

The rolling and sliding cone is the reciprocal of that described
by the invariable plane Art. 173, and is therefore the straight line
perpendicular to that plane which is traced out by the invariable
line.

Ex, 1. Show that the planes described by the invariable line coincide with the
central circular sections of the ellipsoid of gyration and are perpendicular to the
asymptotes of that focal conic of the momental ellipsoid which lies in the plane of
the greatest and least moments, .

Ex. 2. The planes described by the instantaneous axis are perpendicular to the
umbilical diameters of the ellipsoid of gyration and are the diametral planes of
the asymptotes of the focal conic in the momental ellipsoid.

186. The relations to each other of the several planes fixed
in the body may be exhibited by the following figure. Let
A, B, C be the points in which the principal axes of the body
cut a sphere whose centre is O, and radius unity. Let BLK’,
BIJ’' be the planes traced out ’}){ the invariable line and the

e

instantaneous axis respectively. n by the last Article
,_ /4 B=C ,_ /O B=C
tanC’K-— -C,.A—_B, tan CJ' = Z.A——B.
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Hence we find : : _
tan K'J’ =tan LB =/ =D = D)

This is the quantity which has been called n in Art. 184.

- Exactly as in Art. 163 the direction of motion of L is perpen-
dicular to IL and hence the angle ILB is a right angle. Thus
the spherical triangle JLB has one angle right, and another
constant and independent of all initial conditions.

- Exactly as in Art. 163, the velocity of L along LB is equal to
wsin 7L which, by Art. 147, is equal to tan JL.7T/@. But from
the spherical triangle LB we have g sin BL =tan [L. If then we
put as before 8 = BL, we have

T .

_ : ‘% =4 G mein B.

If the initial values of w,, w, have the same sign, the body
is turning round I from K’ to B. Hence, since L is fixed in
space, BL is increasing and therefore the upper sign must be
used in this figure. See also Art. 184. -

- . We may also find an expression for 8 in terms of the time.
Since cos 8= Bw,/G we have, by Art. 184,

1+4cosB 0w B

—————=Fe¢ B ‘s CO —=:J

3 1—cosfB ’ b3 Fe
Ex. Show that the eccentric line deseribes a great circle passing through B and

¢utting AC in some point D’ where tan®* CD'=tan CJ'tan CK’. If E be the inter-

section of the eccentric line with the sphere, show that the arcs BE and BL are
always equal,

187. To find the motion of the body in space.

We have already seen that the motion is such that a plane
fixed in the body, viz. the plane BK’, contains a straight line
fixed in space, viz. the invariable line OL. Since the body is
brought from any. position into the next by an angular velocity
wcos IOL=T/G about OL, and an angular velocity o sin JOL
about a perpendicular to OL, viz. OH, 1t follows that the plane
fixed in the body turns round the line fixed in space with a
uniform angular velocity 7/G or G/B. At the same time the
plane moves so that the line fixed in space appears to describe the
plane with a variable velocity wsin JOL. If 8 be the angle BL,
this has been proved in the.last Article to be nsin 87/ G.

188. .The cone described by OH in the body is the reciprocal
cone of that described by OL, and from it we may deduce re-
.ciprocal theorems. The motion is therefore such that a straight
3+;:i1tne fixed in the body, viz. OH, describes a plane fixed in space,
:*: viz. the plane perpendicular to OL. The straight line moves
* " along this plane with a uniform angular velocity equal to 7/@Q or

G
*Tﬂt.
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G/B, while the angular velocity of the body about this straight
line is + nsin BG/B. - ‘

189. The motion of the principal axes may be deduced from
the general results given in Art. 176. But we may also proceed
thus. Since the body is turning about OI, the point B on the
sphere is moving perpendicularly to the arc IB. Hence the
tangent to the path of B makes with LB an angle which is the
complement of the constant angle JBL. The path traced out
by tEe axis of mean moment on a sphere whose centre is at O is
a thumb line which cuts all the great circles through L at an
angle whose cotangent is + . . :

190. 7o find the motion of the ¥nstantaneous axis in space.

This problem is the same as that considered in Art. 168, We
may however deduce the result at once from Art. 187. The angle
ILB is always a right angle, it therefore follows that the angular
velocity of I round L is the same as that of the arc BL round L.
But the angular velocity of the latter is constant and equal to 7/G.
If then ¢ be the angle the plane LOI containing the instanta-
neous axis and the invariable line makes with some fixed plane
passing through the invariable line, we have % = —g .

191. To find the equation of the cone described by the
instantaneous axis in space, we require a relation between ¢ and ¢,
where ¢ is the arc I114) on the sphere. From the right-angled
triangle ILB we have nsin 8=tan {, and by Art. 186,

@
cotg =JEe 3™,
Eliminating B, we shall have an expression for { in terms of £

2n B B_ jmram, 1 2%u
We find —5=cot 5 +tan JEe +ﬁe .

tan ¢ 2 2

By the last Article ¢ =(7/@) t + F, where F is some constant.
Let us substitute for ¢ in terms of ¢, and let us choose the plane
from which ¢ is measured so that /Ee*"F = 1.

The equation to the cone traced out in space by the instan-
taneous axis is .

2n cot &=e™ + ™™,
When ¢=0, we have tan{=n. Therefore the plane fixed in
space from which ¢ is measured is the plane containing the axes
of greatest and least moment at the instant when that plane
contains the invariable line.

On tracing this cone, we see that it cuts a sphere whose centre
is at the fixed point in a spiral curve. The branches determined
by positive and negative values of ¢ are perfectly equal. As ¢
increases positively the radial arc ¢ continually decreases, the
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spiral therefore makes an infinite number of turns round the
point L, the last turn being infinitely small.

2mb .
Ex. In the herpolhode %:c"“ﬂ:‘"’, if the locus of the extremity of the

polar subtangent of this curve be found and another curve be similarly generated
from this locus, the curve thus obtained will be similar to the herpolhode. [Math.
Tripos, 1863.]

On Correlated and Contrarelated Bodies.

192 To compare the motions of different bodies acted on by
tnatial couples whose planes are parallel.

Let a, B, v be the angles the principal axes 04, 0B, OC of
3 body at the fixed point O make with the invariable line OL.
Then by Art. 144, Euler’s equations may be put into the form
dcosa 1
A 5 G(B C)cOSBCOSry R 1),
with two similar equations. Let A, p, v be the angles the planes
LOA, LOB, LOC make with any plane fixed in space, and passing
through OL. Then

dn T QGcos’a 2)

| sin®a - ik L eeeeereneeeeesaees (2),
with similar equations for x4 and ».
- If accented letters denote similar quantities for some other
body, the corresponding equations will be

d ,
C;: i + @ ( 7 (}’) cos B cosy’'=0 ......... 3),
N T @ cos? ~
sin' o T = _%,_“ ................... 4).
If then the bodies are such that
1 , 1 B
G(B 0,) @ (B 6’)’ &= &Coreenen. ®),

the uations (1) to find a, B, ¢ are the same as the equations (3)

:il a', B, . Therefore if these two bodies be initially placed
w1th their principal axes parallel and be set in motion by impulsive
couples whose magnitudes are G and G, and whose planes are
parallel, then after the lapse of any time ¢ the principal axes of
the two bodies will still be equally* inclined to the common axis
of the couples,

* In order that the angles which the principal axes make with the axis of the
couple may be the same in each body, it is necessary that the cones described by
the axis OL in the body should be the same. Hence by Art. 159, the two ellipsoids
of gyration must have the same circular sections, or which is the same thing, the
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The equations (5) may be put into the form

Since by Art. 146 the Vis Viva is given by
T _cos'a cos’ B  cos'y .
=4 B E g e @,
we see that each of the expressions in (6) is equal to 7/G' — T"/G'.

It immediately follows by subtracting equations (2) and (4)
and dividing by sin®a that

with similar equations for 4 and ». Thus the two bodies being
started as before with their principal axes parallel each to each,
the parallelism of the principal axes may be restored by turning
the body whose principal axes are A’, B, C’ about the com-
mon axis of the impulsive couples through an angle (T/G —T"/&) ¢
in the direction in which positive impulsive couples act*.

.193. When the couples @ and @ are equal the condition (6)
becomes 1 1 1 1 1 1 T-T
= = ~—F

the bodies are then said to be correlated. If momental ellipsoids
of the two bodies be taken so that the moment of inertia in each

two momental ellipsoids must have the same asymptotes to their hyperbolic focal
conics. Algo in order that the cones may be the same we must bave

i1 r 1 1T 1 T
4A"@ B @ _TF
i 7 1 1 1 T
4@ BTeR @
If we put each of these equal to some quantity r, we easily find

1 1 1 1 1 1

4B B°C _C 4_
i1 1 1 1_1°
¥°F PO 07

If in the two bodies the angles between the principal axes and the axis of the eouple
are to be equal each to each at the same time, the equations (1) and (3) of Art. 192
show that we must have in addition //G=r. This leads to the generalization of
Prof. Sylvester’s theory given in the text.

* Bince the cones described by the invariable line in the two bodies are identical,
their reciprocal cones, i.e. Poinsot’s rolling and sliding cones, are also identical in
the two bodies. Thus in the two bodies, the rolling motions of these cones are
equal, but the sliding motions may be different. The sliding motions represent
angular velocities about the invariable line respectively equal to T/G and T”/G'.

Hence we have A M L =

This remark on the former note is due to Prof. Cayley.
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bears the same ratio to the square of the reciprocal of the radius
vector these ellipsoids are clearly confocal.
When the couples G and G’ are equal and opposite, the
equation (6) becomes : ‘
1.1 1 1 1 1 T+T
atxTBtpTcte=Te
and the bodies are said to be contrarelated.

194. To compare the angular velocities of the two bodies at
any instant. : '

Let o be the angular velocity of one body at any instant, then
following the usual notation we have _

cos®q  cos'B  cos'y

o )

If the same letters accented denote similar quantities for the

h . 2 2 k]

pt er bOdy (l," = G * (c‘ ;sa + co' ;'B + 0‘()}’7) .

But remembering the condition (6) these give

T T G @& G & G &
2 n2_ (21 L s (F, 9T LYY Al g, >
0'— (G G,)[cos a(A+A,)+cos/3(B+B,)+cos'.y(0+0,):| .
By referring to (7) the quantity in square brackets is easily
seen to be T/G + 1"/,
™ T
2 3

S0 —w =@—'?, .

195. Ex. If two bodies be 8o related that their ellipsoids of gyration are con-
fooal, and be initially so placed that the angles (a, 8, v) (o, £, ¥') their principal
axes make with the invariable line of each are connected by the equations

cosa_cosa’ cosf cosB cosy cosy

NL O J7 JB JB ' Jo . Jo
and if these bodies be set in motion by two impulsive couples G, G’ respectively
proportional to /4BC and \/4’B'C’, then the above relations will always hold be-
tween the angles (a, 8, %) («, £, 7). If p and p’ be the reciprocals of d\/dt and
dX/dt, then Gp - G'p’ will be constant throughout the motion, where A, X, &c., are

the angles the planes LO4, L'0'4’ make at the time ¢ with their positions at the
time ¢=0.

!=wl!+w‘!+w'l= G’

-,

* This result may also be obtained in the following manner. By Art. 172 the
angular velocity w of one body is equivalent to an angular velocity T'/G about the
invariable line and an angular velocity & about a straight line OH which is a gene-
rator of the rolling and sliding cone. Hence w3=7T3/G3+ 0. A similar equation
with accented letters will hold for the other body. Since in the two bodies the
angles between the principal axes and the invariable line are equal each to each
throughout the motion, the rolling motions of the two cones must be equal, hence
Q=0 It follows immediately that w?— w1 = T%/G2 - T%/G%, .
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- 196. Sylvester’s measure of the time. When a body

turns about a fixed point its motion in space is represented by
making its momentafo ellipsoid roll on a.fixed plane. This gives
no representation of the time occupied by the body in ing from
any position to any other. The preceding Articles enable us
to supply this defect.
. To give distinctness to our ideas let us suppose the momental
ellipsoid to be rolling on a horizontal plane underneath the fixed
point O, and that the instantaneous axis OJ is describing a polhode
about the axis of 4. Let us now remove that half of the ellipsoid
which is bounded by the plane of BC, and which does not touch
the fixed plane. Let us replace this half by the half of another
smaller ellipsoid which is confocal with the first. Let a plane
be drawn parallel to the invariable plane to touch this ellipsoid
in I’ and suppose this plane also to be fixed in space. These two
semi-ellipsoids ‘may be considered as the momental ellipsoids of
two correlated bO(f;es. If they were not attached to each other
and were free to move without interference, each would roll, the
one on the fixed plane which touches at I, and the other on that
which touches at I. By Arts, 192 and 193 the upper ellipsoid
(being the smallest) may be brought into parallelism with the
lower by a rotation Gt(1/4 — 1/A4’) about the invariable line. If
then the upper plane on which the upper ellipsoid rolls be made
to turn round the invariable line as a fixed axis with an angular
velocity G (1/4 — 1/4’), the two ellipsoids will always be in a state
of parallelism, and may be supposed to be rigidly attached to each
other. :

Suppose then the upper tangent plane to be perfectly rough
and capable of turning in a horizonta.lP plane about a vertical axis
which passes through the fixed point. As the nucleus is made
to roll with the under part of its surface on the fixed plane below,
the friction between the upper surface and the plane will cause
the latter* to rotate about its axis. Then the time elapsed will
be in a constant ratio to this motion of rotation, which may be
measured off on an absolutely fixed dial face immediately over the
rotating plane.

197. The preceding theory, so far as it relates to correlated
and contrarelated bodies, is taken from a memoir by Prof. Sylvester -
in the Philosophical Transactions for 1866. He proceeds to in-
vestigate in what cases the upper ellipsoid may be reduced to a

* As the ellipsoid rolls on the lower plane, & certain geometrical condition must
be satisfied that the nucleus may not quit the upper plane or tend to force it
upwards. This condition is that the plane containing OI, OI, must contain
the invariable line, for then and then only the rotation about OI can be resolved
into a-component about OI’ and a component about the invariable line. That this
condition must be satisfied is clear from the reasoning in the text. But it is also
clear from the known properties of confocal ellipsoids.
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disc. It appears that there are always two such discs and -no
more, except in the case of two of the principal moments being
equal, when the solution becomes unique. Of these two discs
one is correlated and the other contrarelated to the given body,
and they will be respectively perpendicular to the axes of greatest
and least moments of inertia.

198. Poinsot’s measure of the time. Poinsot has shown
that the motion of the body may be constructed by a cone fixed
in the body rolling on a plane which turns uniformly round the

invariable line. If, as in the preceding theory, we suppose the .

plane rough, and to be turned by the cone as it rolls on the plane,
the angle turned through by the plane will measure the time
elapsed.

The Sphero-Conic or Spherical Ellipse.

199. The following properties of a sphero-conic will be found useful in con-
nexion with the theorems of Art. 157. They appear to be new. The curve is
represented by the line DED'E'. As before, the eye is supposed to be situated in
the radius through 4, viewing the sphere from a considerable distance. The three
principal planes of the cone intersect the sphere in the three quadrants 4B, BC, C4,
and any one of the three points 4, B, C might be called the centre. The arcs 4D
and AE are represented by a and b.

The letters are not always the same as those used in the dynamical applications
of the curve, but have been chosen to agree as far as possible with those usually
employed in plane conics. In this way the analogy between the plane and the
spherical ellipse will be made more apparent. :

C

D\H N A S

1y
Ml

1. Equation to the conio. Draw the are PN perpendicular to AD and let
PN=y, AN=a. Let NP produced cut the small circle described on DD’ as diame-
ter in P, let NP’ be called the eccentric ordinate and be represented by y’. We
then have tany tan b

tsﬁy’=°°nst“nt=m' cos @ =cos y’ cos .

r
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- 2. The projection of the normal PG on the focal radius vector SP, i.e, PL, is

constant and equal o half the latus rectam.  Also tan Gllv'—oonstant. :
2
Xf 21 be the latus rectum, then tan I= 'I‘“f

8. If QAF be an are cutting PG at right angles, Q4 may be called the semi-
conjugate of AP, Then tan PG . tan PF=t{an®b.

4. The length PK cut off the focal radius vector by the conjugate diameter is
constant.and equal to a. This follows from (2) and (3).

5. If1- e’_“‘"

, ¢ may be called the eocentricity of the sphero-conic. Then
tan 4G =e?tan AN.

6 Algo 8 being a focus SE=HE =a, and tan SA=etana
tan (SP -a)=etan AN.
7. Polar equations to the eonic
tanl e sin? b

Bl - 2 a0l
nsSP= =1- B’bcosPSA St AP =1-e2cos? PAD.
tan3n

8. If p be the radius of curvature at P, then tanp = tand i’
9. Regarding AP, AQ as conjugate semi-diameters, defined as above,

8in? AP 4 8in? 4 Q =sin? a 4-8in?b sin? b
gin AQ . sin PF=gina ., sinb * tan PAD . tan Q4D = - sin%a’

10. If p be the perpendicular from the centre 4 on the tangent at P,

2 t]
: ““‘t:n—f:"’=tan2a+tan=b-tanup.
et tan? PG tan?d -
2 P, = -
11, Also tan' PG tan? = B‘bsm 2 PN, SnSP . snHP —inta’
gin%q - sin? 4 P e .
12. —sin? 4Q - sin?d} ~ T- 2= PN
2

Cor. - tan? PG = cm#:#z (cos® AP —cos?®a cos?d).
If sin AM=sin AM'= B—m—b , the planes of the arcs BM and BM' are parallel to

the circular sections of the cone. Some of the properties of these arcs resemble
those of asymptotes when B is regarded as the centre of the conic. The properties
which connect the sphero-conic with the arcs BM and BM' will be found in
Dr Salmon’s Solid Geometry.

Many other properties of sphero-conics will also be found in Dr Frost’s Solid
Geometry,

EXAMPLES*,

1. A right cone the base of which is an ellipse is supported at G the centre of
gravity, and has a motion communicated to it about an axis through @ perpendicu-
lar to the line joining &, and the extremity B of the axis minor of the base, and in
the plane through B and the axis of the cone. Determine the position of the in-
variable plane. :

* These examples are taken from the Examination Papers which have been set
in the University and in the Colleges.
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Result, The normal to the invariable plane lies in the plane passing through
the axis of the cone and the axis of instantaneous rotation, and makes an angle
whose tangent is h (h*+ 422)/16b (a?+ b%).

2. A spheroid has a particle of mass m fastened at each extremity of the axis of
revolution, and the centre of gravity is fixed. If the body be set rotating about any
axis, show that the spheroid will roll on a fixed plane during the motion provided
m|M =k (1 - a%/c?), where M is the mass of the spheroid, a and ¢ are the axes of the
generating ellipee, ¢ being the axis of figure,

8. A lamina of any form rotating with an angular velocity a« about an axis
through its centre of gravity perpendicular to its plane has an angular velocity
a (B+ C)}/(B-C)* impressed upon it about its principal axis of least moment,
A, B, C being arranged in descending order of magnitude : show that at any time ¢
the angular velocities about the principal axes are respectively

% B+C et—co a,./B*¥C 2
e’ N B0t an B-C oty oot
and that it will ultimately revolve about the axis of mean moment.

4. A rigid body not acted on by any forces is in motion about its centre of
gravity: prove that if the instantaneous axis be at anmy moment situated in the
plane of contact of either of the right circular oylinders described about the central
ellipsoid, it will be so throughout the motion.

If a, b, ¢ be the semi-axes of the central ellipsoid, arranged in descending order
of magnitude, e;, &, e; the eccentricities of its principal sections, O,, O, 0, the
initial component angular velocities of the body about its principal axes, prove that
the condition that the instantaneous axis should be situated in the plane above
described is £, /e, =(ab/c?) (Qy/es).

5. A rigid lamina not acted on by any forces has one point fixed about which
it can turn freely. It is started about a line in the plane of the lamina the moment
of inertia about which is Q. Show that the ratio of the greatest to the least angular
velocity is o/4+ B : \/B+ Q, where 4, B are the principal moments of inertia about
axes in the plane of the lamina.

6. If the earth were a rigid body acted on by no forces rotating about a diameter
which is not a principal axis, show that the latitudes of places would vary and that
the values would recur whenever \/4— B /24— C Jwdt is a multiple of 2x /BC.
If a man were to lie down when his latitude is & minimum and to rise when it be-
comes & maximum, show that he would increase the vis viva, and so cause the pole of
the earth to travel from the axis of greatest moment of inertia towards that of least
moment of inertia.

7. It d8 be the angie between two consecutive positions of the instantaneous

. do duwy duw, duw,
wuin provothat o (57)"= (1) + (@) + (%) - ()

8. If n be the angular velocity of the plane through the invariable line and
the instantaneous axis about the invariable line and A the component angula.r

velocity of the body about the invariable lme, prove that

() en (-9 () (--9)

9. If a body move in any manner, and all the forces pass through the centre of
. d (w? d d d
gravity, prove that fit )+ 2 a (log w;) at (log w,) Et(log wg)=0, where w;, ws wy
are the angular velocities about the principal axes at the centre of gravity, and w
is the resultant angular velocity.
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CHAPTER V.

MOTION OF A BODY UNDER ANY FORCES.

200. IN this Chapter it is proposed to discuss some cases
of the motion of a rigid body in three dimensions as examples
of the processes explained in Chapter 1. The reader will find
it an instructive exercise to attempt their solution by other
methods ; for example, the equations of Lagrange might be
applied with advantage in some cases.

In each section of the Chapter the general method of proceed-
ing will first be explained and a number of examples will then be
considered. These have been chosen as being apparently the most
interesting cases of the motion of a body which occur. But of
course all the results obtained are not equally valuable. Besides
this, some of the processes are only slight variations of those
which have been already explained. Accordingly it has not been
thought necessary in every case to give the whole of the alge-
braical work. The plan of the solution is sketched more or less
fully and the results are stated. It is believed that the reader
will be able to supply the omitted steps for himself. The student
will find his interest in the subject greatly increased if, after
reading the first few articles in each section, he will attack the
problems which ‘follow in his own way. He may then profitably
compare his results with the solutions here sketched out.

Motion of a Top.

201. A body two of whose principal moments at the centre
of grawity are equal moves about some fired point O in the axis
of unequal moment under the action of grawity. Determine the
motion*.

To give distinctness to our ideas we may consider the body
to be a top spinning on a perfectly rough horizontal plane.

Let the axis OZ be vertical. Let the axis of unequal moment
at the centre of gravity be the axis OC and let this be called
the axis of the body. Let % be the distance of the centre of
gravity G of the body from the fixed point O and let the mass
of the body be taken as umity. Let OA be that principal axis

* A partial solution of this problem by Lagrange’s equations is given in Vol. I,
Chap. v, y‘ 928
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at O which lies in the plane ZOC, OB the principal axis perpen-
dicular to this plane.

If we take moments about the axis OC we have by Euler’s
equations (Vol. 1. Chap. v.),
¢%_(4-B)ww,=N.

But in our case A = B, and since the centre of gravity lies
in the axis OC, we have N=0. Hence w, is constant and equal
to its initial value. Let this be called n.

Let us measure along the axis OC in the direction OG a
length OP=A4/h. Then, by Vol. 1. Chap. 111, P is the centre*
of oscillation of the body. This length we shall call I. Let 6
be the inclination of the axis OC to the vertical, 4~ the angle
the plane ZOC makes with some plane fixed in space ,passing
through OZ. Then by the same reasoning as in Euler’s geome-
trical equations (Vol 1. Chap. v.) we find that the velocities of P
resolved .

~ perpendicular to plane ZOC =~ lo, =sin § d\]r/dt} )
parallel to plane Z00= lw,=1d0/dt A

1 T

It is clear that the moment of the momentum about 0Z
will be constant throughout the motion. Since the direction-
cosines of OZ referred to OA, OB, OC are —sin 6, 0 and cos 6,
this principle gives ‘

—Aw,sinf+ Cncosf=E.................. (2),
where E is some constant depending on the initial conditions,
and whose value may be found from this equation by substituting
the initial values of ®,, and 6.

The equation of Vis Viva gives

4 (0 + )+ On'=F—2ghcosd............... (3).

* To avoid confusion in the figure, the body, which is represented by a top,
is drawn smaller than it should be. ]

ra
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where F' is some constant, whose value may be found by substi-
tuting in this equation the initial values of w,, »,, and 8 ¥,

202. Motion of the centre of Oscillation. Let us measure along the vertical
OZ, in the direction opposite to gravity as the positive directior, two lengths
OU=El/Cn, OV=1(F- Cn?/2gh. These lengths we shall write briefly OU=a,
and OV=>b. Draw through U and ¥ two horizontal planes, and let the vertical
through P intersect these planes in M and N. Then the equations (2) and (8) give
by (1), transverse velocity of P=(Cn/h)tan PUM ................... (4).

) (velocity of P)3=2gPN .........cccoovrvimunreerrennnnes (5).
Thus the resultant velocity of P is that due to the depth of P below the horizontal
plane through V, and the velocity of P resolved perpendicular to the plane ZOP
18 proportional to the tangent of the angle PU makes with a horizontal plane.

It appears from this last result that when P is below the horizontal plane
through U, the plane POV turns round the vertical in the same direction as the
body turns round its axis, i.e. according to the usual rule, OV and OP are the
positive directions of the azes of rotation. When P passes above the horizontal
plane through U, the plane POV turns round the vertical in the opposite direction,
If P be below both the horizental planes through O and U these results are still
true, but if a top is viewed from above, the axis will appear to turn round the
vertical in the direction opposite to the rotation of the top. In all the cases
in which P is below the plane UM the lowest point of the rim of the top moves
round the vertical in the same direction as the axis of the top.

If we substitute for w;, wy, E and F in (2) and (3) their values, we easily obtain

PN 11/ a
29 <Y =Cns
hlsin26 dt+C"°°so—Cnl

» %(gg)i+3in’0(%)gz=2g (b—lcos 0) .....................

These equations give in a convenient analytical form the whole motion. We
see from the last equation, what is indeed obvious etherwise, that b—lcos @ is
always positive. The horizontal plane through V is therefore above the initial
position of P and remains abowe P throughout the whole motion.

Ex. 1. If w be the resultant angular velocity of the body and v the velocity of P
show that w?=n3+ (v/I)%.

Ex. 2, Show that the cosine of the inclination of the instantaneous axis to the
vertical is {E+(4—C)ncos 0}/Aw.

* If we eliminate w), w, from equations (1), (2), (3) we have two equations from
which 6 and ¢ may be found by quadratures. These were first obtained by
Lagrange in his Mécanique Analytique, and were afterwards given by Poisson in
his Traité de Mécanique. The former passes them over with but slight notice,
and proceeds to discuss the small oscillations of a body of any form suspended
under the action of gravity from a fixed point. The latter limits the equations to
the case in which the body has an initial angular velocity only about its axis, and
applies them to determine directly the small oscillations of & top (1) when its axis
is nearly vertical, and (2) when its axis makes a nearly constant angle with the
vertical. His results are necessarily more limited than those given in this
treatise.

R. D. II 8
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203. Rise and Fall of u Top. As the axis of the body
goes round the vertical its inclination to the vertical is continually
changing. These changes may be found by ehmmatmg dvr/dt
between the equation (6). ‘We thus obtain

(z%) =2g'(b—leos 6) — (‘ﬁ_ll:;i ......... 7).

It appears from this equation that @ can never vanish unless
a =1, for in any other case the right-hand side of this equation
would become infinite. This may be proved otherwise. Since
a/l is equal to the ratio of the angular momentum about the
vertical to that about the axis of the body, it is clear the axis
could not become vertical unless the ratio is unity. :

Suppose the body to be set in motion in any way with its
axis at an inclination ¢ to the vertical. The axis will begin to

proach or to fall away from the vertical according as the initial
value of df/dt or w, is negative or positive. The axis will then
oscillate between two limiting angles given by the equation

0= 2gh'l’ (b—1cos 6) (1 —cos’ @) —C?n* (a—1 cos 6)*...... ®.

This is a cubic equation to determine cos 0. Tt will be. neces-
sary to examine its roots. When cos§=—1 the right-hand side
is negative ; when cos 6 = cos 4, since the initial value of (df/dt)" is
essentially positive, the right-hand side is either zero or positive ;
hence the equation has oue real root between cos§=—1 and
cos @ =coss. Again, the right-hand side is negative when cosf=+1
and positive when cos §=oo. Hence there is another real root
between cos @ =cost, and cosf =1, and a third root greater than
~unity. This last root is inadmissible.

204. These limits may be conveniently expressed geometrically. The equation
-(7) may evidently be written in the form

(zd) =2g. PN- C’"’.(UM .......................... o).

Describe a parabola with its vertex at U, its axis vertically downwards and its
latus rectum equal to O’n'/2gh’ Let the vertical PMN" cut this parabola in R, we
then have 2% 1 1

(ldoldt)’ 21}MN PM+ﬁf ........................... (10).

The point P oscillates between the two positions in-which the harmonic mean
of PM and PR is equal to —2 . MN. In the figure V is drawn above U, and in
thiis ense one of the limits of P is above UM, and the other below the parabola. If
‘we take' U as origin and UO as the axis of z, we have. PM =z, UM=y. Let 2pl be
the latus rectam of the parabola, and UV=e¢, then the agis.of the.body oseillates
between the two positiens in which. P lies on the cubic ‘curve

P{r+e)=2lad............n. eeesvmaststasras suesae (11).

‘When ¢ is positive, i.e. when V:is above U, the form of the curve is indicated

"in the figure by the dotted line. The tangents at U -cut esch other at a finite
angle and the tangent of the angle either makes with the vertical is '(Spt/c)*.‘_ ‘When
¢ is negative the curve has two branches, one on each side of the vertical, with a
conjugate point at the origin. It is clear from what precedes that the wupper
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-branch will lie above, and the lower branch below, the initial pesition of P,
and that P must always lie between the two branches.

205. 1In the case of a top, the initial motion is generally given
by a rotation n about the axis. We have initially o, =0, o,=0,
and therefore by (2) and (8) E = Cn cos s, and F — On* =2gh cos .
This givesa=b=1[ cost. Putting C*»*/2gh*=2pl, as before, the roots
of equation (8) are cos § =cost, and cos§ =p—~1—2pcost+ p"
The value cos@=p+~1—2pcost+p* is always greater than
unity, for it is clearly decreased by putting unity for cost, and
its value is then not less than unity. The axis of the body will
therefore oscillate between the values of @ just found.

Since a=p, the horizontal planes through U and V coincide, and ¢=0. The
cubic curve which determines the limits of oscillation, becomes the parabola UR
and the straight line UM. The axis of the body will then oscillate between the two
positions in which P lies on the horizontal through U and on the parabola.

Generally the angular velocity » about the axis of figure is
very great. In this case p is very great, and if we reject the
squares of 1/p we see that cos @ will vary between the limits cos<
and cos? —sin’s. /2p.

If the initial value of ¢ is zero, we see that the two limits of
coss are the same. The axis of the body will therefore remain
vertical

206. Exawrres. Ex. 1. When the limiting angles between which ¢ varies are
equal to each other, so that 6 is constant throughout the motion and equal to a,
show that tan? ¢ —tan ¢ tan a + tan?a cos a/4p =0, where ¢ is the angle PUM.

Ex. 2. A top is set in motion on a smooth horizontal plane with an initial
resultant angular velocity about its axis of figure. Show that.the path traced out
by the apex on the horizontal plane lies between two cireles, one of which it touches
and the other it cuts at right angles. [M, Finck, Nouvelles Annales de Mathématiques,
Tom. rx. 1850.]

Ex. 8. Show that the vertical pressure of a fep on the ground is greater than
2
its weight by 3% EFis‘o (sm 0%) . Hence by equation (7) of Art. 203 show that R
is a quadratic function of cos @ with constant coefficients.

207. Precession and Nutation of a Top. 4 body, two of whose principal
moments at the centre of gravity G are equal, turns about a fized peint O in the azis
of unequal moment under the action of gravity. The axis.OG being inclined to the
vertical at an angle a, and revolving about it with a uniform angular velocity, find
the condition that the motion may be steady, and the time of a.small oscillation.

The equations (2) and (3) of Art.. 201 contain the solution of this problem. But
if we use the equation of Vis Viva in the form (3) we shall have to take into account
the squares -of small guantities. It will be found more conyenient to replace it by
one of the equations of the. second .order from which it has been derived. The
simplest method of obtaining this equation. is to use Lagrange’s Rule as given in
Vol. 1. Chap. viz. 'We thus ebtain

a0

. (dP\? . dy .
AE‘;—Acowsmo (37) +Cnsmoa=ghsm0 ............... (12).
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This equation might also have been obtained by differentiating both (2) and (3)
and eliminating d*y/d¢s.

‘When the motion is steady both 8 and dy/dt are constants. Let 0=a, dy/dt=p,
then the equation (2) only determines the constant £ and (12) becomes

sina(—dcosaud+Cnu—gh)=0.....c.ccceunniienncrnnnn. (13).

This indicates two possible states of steady motion, one in which a =0 or », and

the other in which Cnx,JCn?— 4ghd cos a
= 24 cosa
a relation which does not necessarily hold when a=0 or .

In the former of these two motions the axis of the body will oscillate about
the vertical and dy/dt will not be small or nearly constant. It will therefore be
more convenient to discuss the oscillations about this state of steady motion with
other co-ordinates than 6 and .

In the latter of these two motions, if the centre of gravity of the body be above
the horizontal plane through the fixed point O, % cos a will be positive. In this case
the angular velocity n of the top round its axis of figure must be sufficiently great
to make the quantity under the radical positive. We must therefore have n? not
less than 4ghA cos a/C3.

When « and n are given we can make the body move with either of these
two values of x by giving the proper initial angular velocities to the body. By
equations (1) we see that the conditions of steady motion are w;= —usina, w,=0.
‘When a top is set in motion by unwinding a string from the axis, the value of n is
very great while the initial values of «, and w, are zero. The steady motion about
which the top makes small oscillations will therefore have x small. Hence the
radical in (14) will have the negative sign. We have therefore very nearly u=gh/Cn.

208. To find the small oscillation. Let 6=a+ ¢, and dy/dt=pu+dy//dt, where 6’
and dy’/dt are small quantities whose squares are to be neglected. Let a and x be
such that they contain the whole of the constant parts of 8 and dy/dt, so that & and
dy/[dt contain only trigonometrical terms. Then when we substitute these values
in equations (2) and (12), the constant parts must vanish of themselves. The equa-
tions thus obtained determine E and u, and show that their values are the same as '
those determined when the motion is steady. The variable parts of the two equa-
tions become, after writing for Cn its value obtained from (13), -

Apsina %—(’qh—Ay’m a)60'=0

A;l.%’%l+sina(gh—A;4’oos¢) %’+F’A 8in? af’ =0

To solve these, put ¢'=F sin (pt +f), and ¢'=G cos (pt+f).
Substituting, we have

—Apsina.pG=(gh— du?cosa) F 1
(4dpp® — u2d sin?a) F=— (gh— Apdcosa)sina. Gp)

Multiplying these equations together, we have

o A%t —2gh4 cos au?+ g2
r= A%3 ’

and the required time is 2x/p*. It is evident that p? is always positive, and there- ‘
fore both the values of x given by (14) correspond to stable motions.

* This expression was given by the Rev. N. M. Ferrers, now Master of Gonville
and Caius College, as the result of & problem proposed by him for solution in the
Mathematical Tripos, 1859.

~
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It is to be observed that this investigation does not apply if « be very small, for
in that case some of the terms rejected are of the same order of magnitude as those
retained. A different mode of investigation is therefore required, this case will be
considered in Art. 212.

209. We may also determine the steady motion very simply by another process,
which will be found useful when we come to consider Precession and Nutation. Let
OC be the axis of the body, OI the instantaneous. axis of rotation, 0Z the vertical,
Then when the motion is steady, these three must be in one vertical plane which
revolves about 0Z with a uniform angular velocity x. Let w be the angular velocity
about OI, then wcos IC=n. Let OB be the horizontal axis about which gravity
tends to turn the body, then OB is perpendicular to the plane ZOC.

Since gravity generates an angular velocity (ghsin a/4) dt in the time d¢ about
OB, therefore by the parallelogram of angular velocities, the instantaneous axis O
has moved in the time d¢ through an angle (gh sin a/4w) d¢ in a plane perpendicular
to the plane ZOI. Hence the angular velocity of I round Z due to the action of the
d% gh sina 1

Aw ‘sinlIZ’

A]so, since the angular velocity of the body about OB is zero, the moments of
the centrifugal forces about the axes 04, OC are zero. The moment about OB is
(4 —C) nwsin ICdt, and this generates an angular velocity {(4 ~ C)/4} nw sin IC dt
about OB. Hence the angular velocity of I round Z due to the centrifugal forces of
the body lsdnp, 4-C_sin IC

forces is —-1

=" . -,
A 8inlZ
The whole angular velocity is the sum of these two, i.e.

_(ghsina A-C )*_’ii_lg
,u.—( An ooth+——A n sniz’

4 1

/ 3
B

But when the motion is steady 0Z, OI and OC are all in one plane. Now the
angular velocity of C round 7 is w, and therefore its angular velocity round Z is u
where p8in ZC=wsin IC. But wcos IC=n, hence, tan IC =pusin a/n. Bubstituting

this value of tan IC in the value of x, we get gh/u=Cn — Au cos a, the same expres-
sion as before,

210, Ex. A top two of whose principal moments at O are equal is set in rota-
tion about its axis of figure, viz. OC with an angular velocity n, the point O being
fixed. If OC be horizontal, and if the proper initial angular velocity be communi-
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cated to the top about the vertical through 0, prove that the top will not fall down,
but that the axis of figure will revolve round the vertical, in steady motion, with an
angular velocity u=gh/Cn, where h is the distance of the centre of gravity of the top
from O, and C is the moment of inertia about the axis of figure. Show also that if
the top be initially placed with OC nearly horizontal and if a very great angular
velocity be communicated to it about OC without any initial angular velocity about
04 or OB, then OC will revolve round the vertical remaining very nearly in & hori-
zontal plane with an angular velocity u given by the same formula as before, and
the time of the vertical oscillations of OC about its mean position will be 2x4/Cn.

211. Unsymmetrical Tops A4 body whose principal mo-
ments of inertia are not necessarily equal has a pownt O fixed in
space and moves about O under the action of gravity. It is required
to form the general equations of motion.

Let OA4, OB, OC be the principal axes at the fixed point O,
and let these be taken as axes of reference. Let h, k, ¢ be the
co-ordinates of the centre of gravity @, and let the mass of the
body be taken as unity. Let OV be drawn vertically upwards
and let p, ¢, » be the direction-cosines of OV referred to OA,
OB, OC. Then we have by Euler’s equations

do
A'Ef_(B—O)wlwn=_g(kr_19)

B%G’T,_ (C—4)wo,=—g(p=kr) { coceeeee (1),

0%—(11 —B) o0, =—g (hq—kp)

Also p,; ¢, r may be regarded as the co-ordinates of a point
in OV, distant unity from 0. This point is fixed in space, and
therefore its velocities as given by Art. 8 are zero. We have

dr
j—? = 09— o, g—f =0y —op 5 =0,p—0g..(2)

It is obvious that two integrals of these equations are supplied
by the principles of Angular Momentum and Vis Viva. These
~give Ao p+ Bwg+ Cwyr=E,

Ao+ Bo!+ Cow'=F — 29 (ph+ gk + 1),
where E and F are two arbitrary constants. The first of these
might also have been obtained by maultiplying the equations (1)
by p, ¢, r respectively, and (2) by Aw,, Bw,, Co,, and adding all six
results. The second might have been obtained by multiplying
the equations (1) by »,, ®,, w, respectively, adding and.simpli-
fying the right-hand side by (2).

212. A body whose principal moments of inertia at the centre of gravity G are
not necessarily equal, has @ point O in one of the principal axes at G fized in space
and can move about O under the action of gravity. It is set in rotation about OG
which is supposed to be vertical. Find the small oscillations.
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Raferring to the. general equationis of Art. 211, we see that in: this case h=0,
k=0: Since OGC remains always nearly vertical, w; and w, are small quantities, we
may. therefore reject the product wyw, in the last of equations (1). This gives w,
constant, Let this constant value be called ». For the same reagson r=1 mearly
and p, ¢ are both small guantities. Substifuting we get the following linean
equations,

A‘-i—""—(B—C)«uFlM i %p=qﬂ—«a
dw ......... (8), dq ST “).
i~ (C-4d)mey=-lgp a="mre

To solve these, assume
wy,=Fsin (\t+f)] p=Pein(\t+f)
=G cos (At +f)} =Q cos ()\t+f)}
Substituting, we get
ANF-(B-C) nG:gl}Q}} ) AP=Qn- G}
BAG— (d— €)nF=glPf " , A@=Pn - F
Eliminating the ratios F: G : P: Q we have
Ain?(4+ B-C)l={gl+ AN*+ (B-C)n% {gl+ BN\ + (4 - C)n%.

If the values of A thus found should be real, the body will make small oscillations
about the position in which O@ is vertical. If C be the greatest moment, and n3
sufficiently great to make both gl - (C - 4)n? and gl - (C — B) n? negative, then all
the values of A are real and the body will continue to spin with OG vertical. If G
be beneath O, 1 is negative and it will be sufficient that OC should be the axis of
greatest moment.

In order that the values of A2 may be real, we must have
{9L(4+B)+n3(4C+BC-24B-C)P>4{(B-C)nd+gl} {(4 - C)n’+gl; 4B,
and in order that the two values of A\* may have the same sign we must have the
last term of the quadratic positive; ... {(B— C)n3+gl} {(4 - C)n®+gl} is positive,
and in order that the values of \* may be both positive, we must have the coefficient

of \? in the quadratic negative; ... gl (4 + B)<n3(B-C)(4-0).

In the particular case in which 4 =B, each side of the quadratic becomes a
perfect square gnd we have

AN%(24 - €)nA+ (4 - C)nP+gl=0;
84-C_ JOw—ddgl
24 "t 81

In this case the conditions of stability reduce to n> 2 \/A4gl/C. By referring to
equsations (5) and (6) it will be seen that when 4=B we have F=G and P=Q. H
A1 ) be the two values of \ found above, we have

p="P;sin (\¢+f;)+ Pysin (At +fz)}
g=Pycos (\t+f))+Pyo0s(\t+f3))

Following the notation used in Euler’s geometrical equations Vol, 1. Chap. v.,
let @ be the angle OC makes with the vertical taken as axis of z, then r®=cos?0=1- 63,
and hence 6?=p4+¢3=P3+ P38+ 2P, P, cos {(A; — Ng) t+f; — 3}

Let ¢ be the angle the plane containing 04, OC makes with the plane contain-
ing OC and the vertical OV, we have p=— sin 6 cos ¢, and g =sin 6 sin ¢, and hence
P, cos (At +f;) + Py eos (At +fy)

P sin (\t+f) +Pysin (At +1)°

Binee ¢ is very small we have, still following the same natation, y=nt+a - ¢,
where « is some constant, depending on the position of the arbitrary plane from
which y is measured.

S A=F

—tan ¢p=
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When the axis of the top is inclined at an angle a to the vertical, the period of
oscillation about the steady motion is found in Art. 208 to be 2x/p. But this period
is different from either of the periods found in Art. 212 when the axis is supposed
to be nearly vertical. We easily see by eliminating u from the expression for p that
P=\;—),, 80 that the period of oscillation of 6 when the axis is inclined is the
same as the period of oscillation of #2 when the axis is vertical *,

213. A body whose principal moments at the centre of gravity are not necessarily
equal is free to turn about a fized point O, and is in equilibrium under the action of
gravity. A small disturbance being given, find the oscillations.

Referring to the general equations in Art. 211 we see that in this case w;, wy, ws,
are small, hence in equations (1) we may omit the terms containing the products
W Wy, Wywy, wyw,. Also since in equilibrium OG is vertical, p, ¢, r are always
nearly in the ratio h : k : I; hence if 0G=a, we may write hfa, k/a, l/a for p, q, r
on the right-hand sides of equations (2). The six equations are now all linear. To
solve these we put w,=H sin (At +x) and p=h/a+ P cos (At+pu).................. (3),
wy, wy, q and r being represented by similar expressions with K and L written for
H; Q, k and R, ! written for P and k. Substituting these in the equations we get
six linear equations. Eliminating P, Q, R we have

* In order to understand the relatfon which exists between the results and
those of Arts. 208 and 212, it will be necessary to determine the oscillations by some
process which holds both when a is large and very small. This may be done as
follows, We have by Vis Viva the equation (see Art. 201)

(d0 2 (E-Cncosd\? F —2ghcosd .
dt Asing ) A e (1),
where F’ has been put for F— Cn?. If we put z=cos 6, this takes the form

A? (dzfdt) + (E — Cnz)?=A (¥ = 2ghz) (L= 20)e..cvenrenne @).

Let us assume as the solution of this equation £=cosa+ P cos \t+f)...... 3),
where P is so small that on substituting in the above equation we may neglect P3.
Substituting and equating to zero the coefficients of the several powers of cos (\t + f)

we get A?P2\3+ (E - Cncosa)?=A (F' - 2gh cos a) (1 - cos?a)
—(E-Cncosa)Cn= —ghd — AF cos a+3ghd cos®a) ............ (4).
— A2+ C?n¥= - AF +6ghd cos a
Now let us change the constant E into another u by puttingE — Cncos a=p.+ yP3,

4 sin?a
where « is to be so chosen as to remove the term 42P®\?in our first equation.
Since by (1) and (2) Art. 201 0L, 5),
we see that, when 6 is not small, u differs from the constant part of dy/d¢ only by
quantities depending on the squares of the small oscillation, and these are
neglected in the text. Substituting for E and eliminating F’' between the first
and second equations we get Cnu=4 cos au’+ gh.

Eliminating F’ between the first and third of equations (4) and substituting for n
we get A3=(utd? - 2ghA cos au?+ g2h3)[43ul.

This process gives the period of the small oscillation in cos . When 6 is finite
this is the same as the oscillation in 6, since cos 0=cos a - sinaé’. When 8 is very
small, cos #=1—46? and the time of oscillation in cos § is the same as that in 63,
With this understanding it will be seen that there is a perfect agreement between
the results of Arts. 208 and 212, when « is put equal to zero.
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(;-'Axuk'w)zz-hkx- IRL=0
—hEH+ (g BN h’)K— 7% 0 S ).

—ThH - kL + (g ON + B4 R)L=0

Eliminating the ratios of H, K, L we have an equation to find A\3. One root is

A2=0, the others are given by the quadratic
3 3 pay g 3 3
x‘+(k LA L 2")%x*+g""'—’;’z‘(;'—m’=o .......... @),

To ascertain if the roots are real we must apply the usual criterion for a quad-

ratic. This requires that '

{d(B-C)h¥+B(C-4)k*-C(4d-B)l’}*+44B.(B-C) (4 - C) k% ......(6)
should be positive. Since 4, B, C can be chosen to be in descending order, we see
that the condition is satisfied. See also Art. 58.

If G is above O, a is positive and the values of A2 are both negative. The equi-
librium is therefore unstable. If G is below O, a is negative and the values of A2
are both positive. If the roots are equal, the two positive terms in (6) must be
separately zero, this gives k=0 and 4 (B—C)Ak3=C (4 - B)83, i.e. the centre of
gravity lies in the asymptote to the focal hyperbola of the momental ellipsoid. In
this case we find A*= —ag/B. The case in which k=0, 1=0, B=C has been con-
sidered in Art. 212,

If the values of A? are written 0, 2, A\,? we have

w =Hy+ Hy't + H, 8in (At + u;) + Hy sin (gt + p,),

with similar expressions for w,, w;. Equations (2) then give p, g, . But substitut-
ing in (1) we find that all the non-periodic terms which contain ¢ are zero,
Remembering that p*+ ¢*+ r2=1 we have finally

;= Ohfa+ Hysin (A4 p) + Hy 8in (At + py),
w, and w, being represented by similar expressions with &, K and !, L written for
h, H. The values of K;, L, and K,, L, are determined by equations (4) in terms of
H, and H, respectively. We also have

h 1K, - kL,

=g+ 008 () +

IK, - kL
a1 608 (gt + ),
with similar expressions for ¢ and . There remain five constants, viz. O, H,, H,,
B1s Bg to be determined by the initial values of w,, wy, wy, r and q.

‘When the roots are equal the equations depending on p, r, w, separate from those
depending on ¢, w;, w;, forming two sets; we find -

=024 Hein (v-+10) wp=  Ksin (A4 )
h l
24903 . == i
w,=0£+HAa;h;.g—“mO‘t+P1) , p=_+K_cos(At+py)
l h
qg= Hg?cos()\tﬂﬁ) r=_ =K _5cos(At+p)

A solution of this problem conducted in a totally different manner has been
given by Lagrange in his Mécanique Analytique. His results do not altogether
agree with those given here.

If we substitute the values of w;, w,, w;, p, q, r in the equation of angular
momentum of Art. 211 and neglect the squares of small quantities, we evidently
obtain (AW + Bk? + C1) Q3 =Eaq?, AHk+ BKk+CLl=0.
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The first of these equations shows that Q vanishes when the initial conditions
are such that the angular momentum about the vertical is. zero. In this case the
problem reduces to that considered in Art. 184,

214. A body whose principal moments of inertia are not necessarily equal has a
point O fized in space and moves about O under the action of gravity. It is required
to find what cases of steady motion are possible in which one principal azis OC at O
describes a right cone round the vertical while the angular velocity of the body about
OC 1is constant ; and to find the small oscillations.

Referring to the general equations of Art. 311, we see that r and w, are given to
be constants. In this case the first two equations of (1) and (2) form a set of linear
equations to find the four quantities p, ¢, w;, ws. The solution of these equations
is therefore of the form

w,=F,+F;sin (\t +f)} p=P,+ P sin (M+f)}
wa=Go+ Gycos (Nt + )] * q=Qot @ eos(\t+ /) ~

But these must also satisfy the last of equationa (1). Substituting we see that
there will be a term on the left side of the form

-}~ BYF,G, in2 it +1),

Bat there.will be no such term on the right side. Hence we must have either
A=B, F;=0or G;=0. The motion in the case in which 4=B has already been
considered in Art, 207. Again, substituting in the last of equations (2) and equat-
ing to zero the coefficient of sin 2 (At +f) we find

P,G, - F,Q,=0.
Substituting in the first two of equations (1) and equating to zero the coeflicients
of cos (\t+f) and sin (\¢ +f), we find
ANF) — (B - C)nGy=glQ,
~ BAG, ~(C - 4) nF =~ glP,;
from these equations we have F, G,, P,, @, all equal to zero and therefore w;, w,,
, q are all constant as well as the given constants w; and ».

In this case the equations (2) give v)/p=w,/q=1y/r, 80 that the axis of revolu-
tion must be vertical. Let w be the angular velocity about the vertical. Then
W =pw, w;=qw, wy=rw. Bubstituting in equations (1) we get

b Ao _k B2 1 Cu? '
» 9 a9 g9 *r ¢

Unless, therefore, two of the principal mements are equal, it is mecessary for
steady motion that the axis of rotation should be vertical and ths centre of gravity
(hkl) must lie in the vertical straight line whose equations are (3).

This straight line may be constructed geometrically in the following manner.
Measure along the vertical a length OV=g/w? and draw & plane through ¥ perpen-
dicular to OV to touch an ellipsoid confocal with the ellipsoid of gyration. The
centre of gravity must lie on the normal at the point of contact.

To find the small oscillations about the steady motion, i.e. to determine whether
this motion be stable or not, we must put

p=cos a+ P, sin M+ P; eos A,
with similar expressions for ¢, r, w;, w,, wg. Substituting we shall get twelve linear
equations to determine eleven ratios. Eliminating these we have an equation to
find \. It is sufficient for stability that all the roots of this equation should be real.
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Motion of a Sphere.

215. Gieneral equations of Motion. 7o determine the motion
of a sphere on any perfectly rough surface under the action of any

orces whose resultant passes through the centre of the sphere.

Let G be the centre of gravity of the body and let the movi
axes GC, GA, GB be respectively a normal to the surface an
some two lines at right angles to be afterwards chosen at our
convenience. Let the motions of these axes be determined by
the angular velocities 6,, 6,, 6, about their instantaneous positions
in the manner explamed in A:t 3. Let u, v, w be the velocities
of G resolved parallel to the axes so that w =0, and »,, @, &, the
angular velocities of the body about these axes. i' F be the
resolved parts of the friction of the perfectly rou, h surface on the
sphere parallel to the axes, GA, GB, and let K be the normal
reaction. Let X, ¥, Z be the resolved parts of the impressed
forces on the centre of gravity. Let ¥ be the radius of gyration
of the sphere about a diameter, a its radius, and let its mass be
unity. We shall suppose that in the standard case the sphere
rolls on the comvex side of the fixed surface and that the positive
direction of the axis Z is drawn outwards from the surface. The
equatiens of motion of the sphere are by Arts. 22 and 5,

%—_8,@,4- O, = -{kw,g
da)
dt
do, _
dt
du
dt
g_;: +0 LN /% RUTTTRES (2),
—Ou+0p=2+R

and since the point of contact of the sphere and surface is at rest,
we have

—0,0,+ 6,0, =— %‘ ST ¢ H
—60,+00,=0

~6p =X+ F

v—aw,=0, v+ao, =0 .....ccceuvonin. (3).
Eliminating F, F', ,, », from these equations, we get
du 3
Gv ’+k"X+a+k‘0‘aw .
dv o Py TN ¢ ) X

@t o=y Y+ o fee,

216. The meaning of these equations may be found as follows.
They are the two equations of motion of the centre of gravity of
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the sphere, which we should have obtained if the given surface
had been smooth and the centre of gravity had been acted on

K
P 6,aw, and P 0,00, along the axes
G4, GB, and by the same impressed forces as before reduced in

by accelerating forces

. a
the ratio ppyrl
in these two cases with the same initial conditions will be the
same. More convenient expressions for these two additional forces
may be found thus. The centre of gravity moves along a surface
formed by producing all the normals to the given surface a constant
length equal to the radius of the sphere. Let us take the axes
GA4, GB to be tangents to the lines of curvature of this surface
and let p,, p, be the radii of curvature of the normal sections
through these tangents respectively. Then

The motion therefore of the centre of gravity

0,==2, 6=2 e (5).

Pa Py

If G be the position of the centre of gravity at the time ¢, the
quantity 6,d¢ is the angle between the projections of two successive
positions of GA on the tangent plane at G. Let x,, %, be the
angles the radii of the curvature of the lines of curvature at G
" make with the normal. The centre of the sphere may be brought
from @ to any neighbouring position G' by moving it first from G
to H along one line of curvature and then from H to G along the
other. As the sphere moves from @ to H, the angle turned round
by G'A is the product of the arc GH into the resolved curvature
of GH in the tangent plane. By Meunier’s theorem, the curvature

18

o multiplying this by sin y, to resolve it into the tangent

P
pla.nle we find that the part of 6, due to the motion along GH is
gtan X,- Treating the arc H@ in the same way, we have
v u v
0,=;ta.nxl+,—)-ta.nx, .................... (6).

1 2
This result follows also from that given in Art. 13, Ex. 2.

We have also an expression for w, given by equations (1).
Substituting for ,, @, from the geometrical equations (3) we get

Many of the results in this section are deduced from equations
(4) and (7) and in all these cases an apparently independent
solution may be obtained by forming over again the equations
(1), (2), (3), &c. (from which (4) and (7) have been derived), with
such simplifications as suit the problem under consideration. An
example of this process is given m Art. 221.
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217. The solution of the equations may be conducted as fol-
lows. Let (z, y, z) be the co-ordinates of the centre of the sphere.
Then %, v may be found from the equation to the surface in terms
of dz/dt, dy/dt, dz/dt by resolving parallel to the axes of reference.
If we eliminate u, v, 0,, 6,, 6, by means of (4), (5), and (6), we
shall get three equations containing #, 9, 2, »,, and their differential .
coefficients with respect to £. These together with the equation
to the surface will be sufficient to determine the motion at any
time. One integral can always be found by the principle of Vis
Viva. Since the sphere is turning about the point of contact as
an instantaneously fixed point we have

(4 ) (014 0) + o =24,
where ¢ is the force function of the impressed forces. This is

the same as ka® 3

2 2 L .
'+ v +—ag+k,co3 2——a,+k,¢ ............... (8),
and the right-hand side of this equation is twice the force function
of the altered impressed forces.

218. It will sometimes be more convenient to take the axis G4 to be a tangent
to the path. Then »=0 and therefore w;=0. If U be the resultant velocity of
the centre of the sphere we have u=T. Also if R be the radius of torsion of &
geodesic touching the path at G and p the radius of curvature of the normal
section at ¢ through a tangent to the path, we have 6,=U/R and 6,=U[p. In these
expressions, as elsewhere, R is estimated positive when the torsion round G4 is
from the positive direction of @B to the positive direction of GC. If x be the
angle the radius of curvature of the path makes with the normal, we have as before
63=tanx Ulp. The equations (4) become

Ww_a@ g BT
@t A+ T e R
e & BT [ (v).
R s
The expression for w, given by equations (1) now takes the form
‘.ig’—— 2’ (vn)
GL TR e

It may be shown by geometrical considerations that this form is identical with
that given in (7).

219. To find the pressure on the surface we use the last of equations (2). This
may be written in either of the forms
O e Y R ©).
P P P
The sphere will leave the surface when R changes sign. This will generally
occur when the velocity of the centre of the sphere is that due to one half of the
projection of the radius of curvature of the normal section on the direction of the
resultant force. o

220. Ex. 1. Show that the angular velocity of the sphere about a normal to
the surface, viz. ws, is constant when.the direction of motion of the centre of
gravity is a tangent to a line of curvature, and only then.
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Ex. 2. A spheve is projested without initia]l angular velooity about the radius
normal to the surface, 40 that its centre begins to move along.a line .of .curvature.
.Show that it will continue to describe that line of curvature if the force transverse
to the line of curvainre and tangential o the surface is equal to seven-fifths of the
centrifugal force.of the whole mass collected into the.centre, resolved in the tangent
plane to the surface.

Ex. 8. If the sphere be not acted on by any forces, show that

U’(hn’x-l-;):mtult, aw,:% Utany, %'log (tan’x+;)=_%hnx.

Show also that the path will not be a geodesic unless the path is a plane curve.

221. Motion on a rough plane. If the given surface on
which the sphere rolls be a plane, we have p, and p, both infinite,
hence 0,, 6, are both zero. If therefore a homogeneous sphere roll
on a perfectly rough plane under the action of any forces whatever
of ‘which the resultant passes through the centre of the sphere, the
motion of the centre of grawvity s the same as if the plane were
:#mooth, and all the forces were reduced o ﬁw-aam:t{s of their
Sformer value. And 1t 18 also clear that the plane i the only surface
which possesses this property for all initial conditions.

We may easily obtain the first part of this theorem from first principles.
Taking-the. directions of the axes of = and y to be fixed in space and parallel to_the
rough plane we have (Arts. 22 and 236)

dw, du
Ay . dy _ v4+aw, =<0
Eliminating F, F', w,, w, we find
du ot do_ _at Y
dt " a*+8"  dt al+k 7’

which is the analytical statement of the theorem. The six equations of motion
from which this result is derived are obviously only simplified forms of equations
(1), ), (3) of Art. 215.

222. Ex. A homogeneous sphere is placed upon an inclined plane sufficiently
rough to prevent sliding and a velocity in any direction is communicated toit. Show
that the path of its centre will be a parabola, and if ¥ be the iunitial horizental
velocity of the centre of gravity, a the inclination of the plane to the horizon, the
latus rectum will be 2 ¥*/g sin a,

223. Motion on a rough spherical surface. If the given
surface on which the sphere rolls be another sphere of radius b— a,
we have p, =p, =b. Hence w, is constant; let this constant value
be called n, and let U be the velocity of the centre of grawity.
Since every normal section is a principal section, let us take G4 a
tangent to the path. Hence the motion of the cenire of gravity is
the same as if the whole mass collected at that point were acted on

by an accelerating force a,—’:_i? E%gin a direction perpendicular to
the path, and all the tmpressed forces were reduced in the ratio
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u!

a'+ k'
tions of the axes (G4, @B, GC it is clear that if the positive
direction of G4 be in the direction of motion, the angular velocity
n should be estimated positive when the part of the sphere in
front is moving to the right of GA and the additional force when
positive will also act toward the right-hand side of the tangent.
Since this additional force acts perpendicular to the path, it will
not .appear in the equation of Vis Viva. Hence the velocity of
the -centre of gravity in .any position is the same as if it had
arrived there simply under the action of the reduced forces. Let
O be the centre of the fixed sphere, @ the angle O & makes with
the vertical 0Z, and + the angle ‘the plane ZOG makes with any
fixed ;plane passing through OZ. Then by Vis Viva we have

dﬁ)" - d\p)’ 29 a'
(-d—t -+ sln 0(75 F——b-m0080,
where £ is some constant to be determined from the initial con-
ditions. This also follows from equation (8).
Also taking moments about OZ; we have
b df. ,,d¢ K dé
s (O =T g
an equation which will be found to be a transformation of the
second of equations (4). Integrating this equation we have
. g 00 B an
29077 — —_
sin’f 7t E pwris cos f,
where E is some constant. These two equations will suffice to
determine df/dt and dv-/dt under any given initial conditions.

If the sphere have no initial angular velocity about the normal
to the surface it is clear that n =0 and the additional impressed
force is zero. If therefore a homogeneous sphere roll on a perfectly
rough fized spherical surface, and if the sphere either start from
rest or have its initial angular velocity about the common normal
equal Yo zero, the motion of the centre of the sphere is the same as
if the fiwed spherical surface were smooth and the forces on .the
rolling sphere were reduced to five-sevenths of their former value.

224. Ex. A homogeneous sphere rolls under the action of gravity in any
manner on a perfectly rough fixed sphere whose centre is O. Prove that through-
out the motion (1) the velocity of the centre G of the moving sphere is that due to
five-sevenths of its depth below a fixed horizontal plane; (2) the moving aphere will
leave the fixed sphere when the altitude of its centre above O is ten-seventeenths of
the altitude of the fixed plane above the same point; (3) the tranaverse velocity of
@G is proportional {o the tangent of the angle GU makes with the horizon, where U
is a fixed point on a vertical through 0.

225. Motion on a rough cylnder. If the surface on which the sphere rolls be
a cylinder the lines of curvature are the generators and the transverse sections.
Let the axis GA be directed parallel to the generators, then p, is infinite and p;-a

According to the usual convention as to the relative pesi-
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is the radius of curvature of the transverse section. We have 6,=- v/p,, 0,=0,
and since x,=0, 6;=0. The equations (4) and (7) therefore become

du __ a* x_,"t, L
PTaRE Y R B Z %
dv _ a? "
dt ~ A+ kd
d(aw,)_i_t_q
Pa

From these equations the motion may be found.

The second of these gives the motion transverse to the generators of the cylinder,
and if Y be the same for all positions of the sphere on the same generator, this
equation may be solved independently of the other two. Tke transverse motion of
the centre of the sphere is therefore the same under the same initial circumstances
as that of a smooth sphere comstraimed to slide in a plane perpendicular to the
generators on the transverse section of the cylinder and acted on by the same impressed
Jorces but reduced in the ratio a2/ (a®+ k).

Having found v we may proceed thus; let ¢ be the angle the normal plane to
the cylinder through a generator and through the centre of the sphere makes with
some fixed plane passing through a generator, then v=p,d¢/dt. If dg/dt be not
zero, the first and third equations then become

du k2 __a p, _d(awy)
E+a’+k’w’—a'+k’ v “="d¢ *

If X be the same for all positions of the sphere on the same generator these
equations can be solved without difficulty. For v and p, being known in terms of ¢,
we have in this case two linear equations to find 4 and aw,. If X be Eexo, and
k?*=4%a?, we find

awy=A8in (¥ p+B), u=4/§cos(\/F ¢+ B),
where 4 and B are two arbitrary constants to be determined by the initial values of
% and w,,

If X be not the same for all positions of the sphere on the same generator, let £
be the space traversed by the sphere measured along a generator. Then

u=dg/dt=(dt/de) (v]py)-

Substituting this value of u, we have two equations to find { and aw; in terms
of ¢. One integral of these is equation (8) of Art. 217 which was obtained by the
principle of Vis Viva.

226. Ex. A sphere rolls under the action of gravity on a perfectly rough
cylindrical surface with its axis inclined at an angle a to the horizon. The section
of the cylinder is such that when the sphere rolls on it, the centre describes a
oycloid with its cusps on the same horizontal line. If the sphere start from rest
with its centre at a cusp, find the motion.

Let the position of the sphere be defined by ¢ the space described along a gene-
rator and s the arc of the cycloid measured from the vertex. If 4b be the radius of
curvature of the cycloid at its vertex, we have

_ bg cos a
8=4b cos '\/W"

Since v=ds/dt and p,3+s3=16)% we find that v/p, is constant. This gives with-

out difficulty = _tna '\/35bg 1 5gcosaf
cosa 2b ’

ot 10bg . 1 \/59 cos a
%=81n a osam 7 2 t.
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227. The relation, v/p;=constant, holds whenever (1) the forées acting at.the
centre of the sphere, and the form of the section of the cylinder, are 8o related that
the tangential component bears a constant ratio to pydps/ds, and (2) the sphere starts
from rest at a point where p, is zero. In such a case, the normal plane to the sectiof
through the centre of the sphere has a constant angular velocity in space and the
resolved motion of the sphere perpendicular to the generators is independent of that
along the generators.

Ex. A sphere rolls on a perfectly rough right circular cylinder whose rndms is
¢ under the action of no forces, show that the path traced out by the point of con-

taot becomes the curve z=4 sin (2y/7c)* when the eylinder is developed on a plane.

This result shows that the sphere cannot be made to travel continually in one
direction along the length of the cylinder except when the point of contact deseribes
& generator.

228. Motion on a rough ocome. If the surface on which the sphere rolls be a
cone, the lines of curvature are the generators and their orthogonal trajectories.
Let the axis G4 be directed parallel to the generator, then p, is infinite and p,—a
is the radius of curvature of a normal section perpendicular to the generators.
Also 6,= —v/py, 0,=0. Let the position of the sphere be defined by the distance r
of its centre from the vertex 0 of the cone on which the centre always lies and by
an angle ¢ such that d¢ is the .angle between two consecutive positions of the
distance r, d¢ being taken as positive when the centre moves in the positive di-
rection of GB. If the cone were developed on a plane it is clear that » and ¢ would
be the ordinary polar oo-ordmates of a point G. We have -

d¢ _dar d¢

b=% =@+ "=Ta-
The equahona (4) and (7) become therefore .
a? B oy de
dt’ ( Uy @R p, M ar

a?
r dt (r’ ) a’+k’Y
d(awy) _ r dg dr
@ pqy dt dt

If the impressed forces have no component perpendicular fo the normal plane
through a generator, ¥=0, and we have 73d¢/dt =h, where k is some constant de-
pending on the initial values of r and v.

If also the component X of the forces along a generator be a function of r only,
another integral can be found by the principle of Vis Viva, viz. .

k3
) ( + gepetel =g | Xarsw,

where }’ is another constant depending on the initial values of u, v and r.
If, further, the cone be a right cone, p,=r tan a where a is the semi-angle, and

we have atog= — h cot . 2

where A" is a third constant depending on the initial values of wg and 7. The equa-
tions of the motion of the centre of the sphere resemble those of a particle in central
forces. Hence r and ¢ will be found as functions of the time if we regard them as
the co-ordinates of a free particle moving in a plane under the action of a central

3
force represented by ﬁ_—’?— 3X - K2y ‘;—2’% , where wy has the value just found.
R. D. IL 9
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229, Ex. A sphere rolls on a perfectly rough eone such that the equation to
the cone on which the centre G always lies is r=p,F'(¢p). If the centre is acted ont
by a force tending to the veriex, find the law of force that any given path may be
described. If the equation to the path be 1/r=f(g), prove that the foree X is

X =k, %’+a—t£k’f’ (f+ ::f,) » Where w, is given bydw'-_ -s :‘;

~ 230, XMEotiom on a surface of revolution. Let the given rough surface be any
surface of revolution placed with its azis of figure vertical and vertex upwards, and
let gravity be the only impressed force. In this case the meridians and parallels are
the lines of curvature. Let the axis of figure be the axis of Z. Let 6 be the angle
the axis GC makes with the axis of Z, ¥ the angle the plane containing Z and GC
makes with any fixed vertical plane.
v do

d
Then o=-simno ¥, 4=, o=c0n0%.
Henge the equations (4) booome
dy ] . kl . d "
%-mﬂd—ft’aa{'——;gm0~maﬁma di:.. ..... e ans(ids
dv L v B a dag @
ag Toos =TS g crssentectartansenanns ii),
and equation (8) becomes " o
u’+v’+—,—k,a!u, =E+2g ’+ksfp81n0d5 ............... (iii),
whereEissomaoonstant,mdpmthand:uotomtumofthemandmn Alse
we have by (7) dey __uv (_ _sing @
=" a 7] e )

where r is the distance of the ¢entre of the sphere from the axis of 2. The
geometrical equations (5) become

ay
$=p3 VP e e (v).
To solve these, we may put (ii) into the form
dv+oos od\bu kK a
7] ag"= 5+ K0
. dv poos 0
which by (v) becomes b fﬁ awy
differentiating this, we have by (w), .
dw poosf dv .
. d0’+ T do = +Prx=® (i),
» 4 (peos P sin @
where P= ( e (1 29).

Now p and r may be foand fmm the equation to the meridian curve as functions
of 9, Hence P is a known function of 6. Solving this linear equation we have v
found as & function of . Then by (iv) we have

duwg _ ( 1-2 sin 0)

de ’
and thence having found w, we have u by equn.tlon (iii). Knowing 4 and v; @ and
¥ may be found by equations (v).

231, Oncillationa on the summit of a rough fxed surtace. 4 heavy sphere
yolating about a vertical azis is placed in equilibrium on the highest point of a surface
of any form and being slightly disturbed makes small oscillations, find the motion.,

Let O be the highest point of the surface on which the centre of gravity G

. o T
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always lies, Let the tahgents to the lines of curvature at O be taken as the axes of
z and y, and let (z, y, £) be the co-ordinates of G. We shall assume that O is not
a singulat point on the surface. In order to simplify the general equations of
motion (4) we shall take as the axes G4 and GB the tangents to the lines of
curvature at @, But since G always remains véry near O, the tangents to the
lines of curvatiire at G will be nearly parallel to those at O. 80 that to the first
order of small quantities we have

0= 1 dy _lde u—d"' _dy
1= T at? T dt? Tdt’ Tat?

" and 6, will be & small quantity of at least the first order. Also since the sphere
is supposed not to deviate far from the highest point of the surface, we have w,
constant, let this constant be called n.

The equation to the surface on which G faoves, in the neighbourhood of
' ]
the highest point, is z= -'-}(:1— +Z—:). The direstion cosines of the normal at

, 9, ¢ are zfp,, ylp;, 1. Hence the resolved parts parallel to the axes of the normal
pressure R on the sphere are Rz[p;, Ryfp, and R. The equations of motion (4)
therefore become diz_ & z K dy an
= e ;l_a’+k’ dt py
ay_ a rY4 K dz an
Rl w: E Fy xR Ty
d*
F
But 2 is & small quantity of the sesond order; henoe the last equation gives
R=g. To solve these equations, we put -
w=F cos (M+f), y= G sin (At +1).
2 axn
()‘ +a’+k’ pl) a’+k’ rn G
142 8)g Ko\
()‘ -'.a,’-l-'k2 p,)a‘éhr_k‘ ” F
The equation to find A is therefore

(e+afm %) (o £) ~ovmm

a+k2 p a’+k’ Pa (a’+k’_)‘ P1Pa

This is a quadratic equation to determine A\2. In order that the motion may
be oscillatory it is necessary and sufficient that the roots should be both positive,
If p,4 A be both negative, so that the sphers is plaséd liké a ball inside a cup, the
roots of the quadratio are positive for all values of n. I pj, p, have opposite signs
the roots cannot be both positive, If p,l, p, be both positivé the two conditions of

stability will be found to reduce to n? > ‘ y (;J Pt J;,)’
I p, be infinite, it is neoessary that p, should be hegative, and ifi that case
al
the two values of A3 are — FEE

If p,=ps, We have F=G., In thm cage if 4 be the inclination of the normal to the
vertical, we have 62=(x%+3?%)/p? and, as in Art. 213, we find
O*=F+ F,2+2FF; 008 {(\ — M) ¢+, - fo}s
where A, \; are the roots of the quadratic
k3 an at

B M AT

. These give

9 and zero, which are both independent of n.

Nt ——
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.232. This problem may also be solved by Lagrange’s method altheugh the
geometrical equations contain differential coefficients with regard to the time. To
effect this we have recourse to the method of indeterminate multipliers as explained
in Vol 1. Chap. viir.  Let the axes of reference Oz, Oy, Oz be the same as before.
Let GC be that diameter which is vertical when the sphere is in equilibrium on the
summit. Let G4, GB be two other diameters forming with GC a system of rect-
angular axes fixed in the sphere. Let the position of these with reference to the
axes fixed in space be defined by the angular co-ordinates 6, ¢, y in Euler’s manner.
The vis viva of the sphere will then be

AT=2"+y2+22+ k* (¢'+ ¥/ co8 6) + k3 (02 + sin? 6y?).
If we put sin 6cos y=¢, sin fsiny=y, ¢p+y¥=yx, and reject all small qna.ntxtxes
above the second order, we find that the Lagrangian function is

L=} @ +y) + B (- (' - £’1l)+&"+ﬂ"}+ia( ”)

It is easy to see by reference o the figure for Eunler’s geometrical equations
Vol. 1. Chap. v. that { and » are the cosines of the angles the diameter GC makes
with the axes Oz, Oy.

If w,, wy, w, are the angular velocities of the sphere about parallels to the axes
fixed in space, the geometrical equations are

o~ a( %):o, y+a(u, o,h)_o.

These are found by making the resolved velocities of the point of contact in the
directions of the axes of z and y equal to zero. See the expressions in Vol. 1.
Chap. v. for the velocity of any point. The angular velocities w,, wy, w, may be
expressed in terms of 0, ¢, '[4 by formuls analogous to those of Euler. _ Bee'Vol...
Chap. v. Thus =~0@siny+¢'sinfcos y

w,— @cosy+¢'sinfginyl.

w,= ¢'cosb+y
Substituting and expressing the result in terms of the new co-ordinates §, 3, x, the
geometrical equatwns become ,

L=-Z4xa+e-x 10, L=!+x'£—vn'-x';l=0-

Lagrange's equations of motion modlﬂed by the indeterminate multipliers A and u
are repreaented by the typical form
4 de oL =\ dL} +p éL"’ ’ -
dtdg dg "d¢” "dg
where ¢ stands for any one of the five co-ordinates z, y, £, 9, x. The steady motion
is given by =, y, £, 7 all zero and ¥ =n. Taking g=2 and g=y and giving the
several co-ordinates their values in the steady motion, we find that A and x are both
gero in the steady motion.
To find the oscillations, we write for ¢ in tum =, y, x, £ and %, and retain the
first powers of the small quantities. Remembering that A and x are small quanti-
ties (Axt. 51), we find

z"—gi+§=0
G ,
oY _E_g > "'(E'+x'ﬂ’)-7\=0}
V=05 a=0 W ('~ XE) +u=0f °
k=0

These and the two geometrical equations L, and L, are all linear, and may be
solved in the usual manner. If we put )’=n and eliminate first A and x and then
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£ and 9 we get two equations to find z and y, which are the same as those marked
(iv) in the solution of Art. 231, ’

233. Ex. A perfectly rough sphere is placed on a perfectly rough fixed sphere
near the highest point. The upper sphere has an angular velocity n about the
diameter through the point of contact; prove that its equilibrium will be stable
if %2> 359 (a+b)/a?, where b is the radius of the fixed sphere, and a the radius
of the moving sphere.

234. Oscillations about steady motion. A perfectly rough surface of revolu-
tion is placed with its axis vertical. Determine the circumstances of motion that a
heavy sphere may roll on it so that its cetitre describes a horizontal circle. And this
state of steady motion being disturbed, find the small oscillations.

In this case we must recur to the equations of Art, 230, We shall adopt the
notation of that article, except that to shorten the expressions we shall put for k?
its value a2,

To find the steady motion. We must put u, v, wg, 0, dy/dt all constant, Let
a, x and n be the constant values of 6, dy/dt and w,. Then we have u=0, v=>bpu,
where b is the constant value of ». The equation (i) becomes '

~bcosau?=4gsina—$ansin ap.
The other dynamical equations are satisfied without giving any relation between
the constants, If the motion be steady, we have therefore

n=g al“ +~;— ?—lp.cota;
thus for the same value of n we have two values of u, which correspond to different
initial values of v.

We have the geometrical relation aw,= —v, so that w, and n have opposite
signs. Hence the axis of rotation which necessarily passes through the point of
contact of the sphere with the rough surface makes an angle with the vertical less
than that made by the normal at the point of contact.

If the sphere roll on a surface of revolution so that the axis GC is turned
from the axis of symmetry, the angle a must be positive. By inspecting the
expression for n and making dn/du=0 it will be seen that the least value of the

angular velocity n of the sphere is given by n?=35cot «.bg/a’. In this case the

precesgional motion of the sphere is given by u3=§tana.g/b. If the sphere roll
on the inner and upper side of such a surface as an anchor ring held with its axis
vertical the angle a is negative, and there is no inferior limit to the value of n.

To find the small oscillation,

Put 6=a+¢, dy/dt=pn+dydt, where a and u are supposed to contain all the
constant parts of § and dy/dt, so that ¢ and dy//dt only contain trigonometrical
terms. Let ¢ —a be the radius of curvature of the surface of revolution at the point
of contact of the sphere in steady motion, so that p differs from ¢ only by small
quantities, and may be put equal to ¢ in the small terms. Also we haver=>b+ccosa.f'.

Now by equations (iv) and (v) of Art. 230 we have

dw, df dy psinf-r_df' csina-b
at dta a @l a ¢

csina-b ,,
S =g —— 0 +n,

where n is the whole of the constant part of w;.
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Again, from equation (ii), we have
ldf dy\ _pdb ay B da_ ..
- l_il f‘dt) 00!0&?4' 0.

a adt Py R P
. B dé gdj coosaudd 8 d¢_
et e T T e atitaY
. . 2 Sucoosa\ , bdy
t - )g=- Y
integrating we have R 2 )0’ e dc’
the constant being put zero because & and y’ only contain trigonometrical terms.
Thirdly, from equation (i), we have

1d( do\ r(dy\? 2 dy _bg . .
...n(f'a "&(E 008 0+7 wysin oy =7 sin 0;
c d b+ccosal . d
R T - e (oou:.—mna")(;&'-i—’p%)

2 . ay csina-b,\ _Bg, .
+,’(sma+oosa0’) (p+7u—) (n+ b 0’) =7 ;(ama.+ooaao').
This expression must be expanded and expressed in the form
ase
W'I"AO':B.
In this case, since ¢’ contains only trigonometrical expressions, we must have B=0.
Putting #=0 in the above expression, we find the same value for n as in steady

motion, After expanding the preceding equation we find
b (2 ooa? ¢+§lin'¢)
in a 7
9. 10g
+4—9 —[t’bd -7 BMIOOBC'P—,T EOOSG.

In order that the motion may be steady, it is sufficient and necessary that this
value of 4 should be positive. And the time of oscillation is then 2x/n/d.

It is to be observed that this investigation does not apply if « and therefore b be
small, for some terms which have been rejected have b in their denominators, and
may become important.

235. Motion on an Imperfectly rough surface. The
general equations of the motion of a sphere on an imperfectly
rough surface may be obtained on principles similar to those
adopted in Vol. 1. Chap. VI to determine the motion of rough
elastic bodies impinging on each other. The difference in the
theory will be made clear by the following example, in which a
method of proceeding is explained which 18 generally applicable,
whenever the integrations can be effected.

2
=u (- cos®a+2 sint 3
p.| p.( oos¢+7am¢..+p.“

236. A homogeneous sphere moves on an imperfectly rough
inclined plane with any imitial conditions, find the direction of the
motion and the velocity of its centre at any time.

- Let @ be the centre of gravity of the sphere. Let the axes of
reference GA, GB, GC have their directions fixed in space, the
first being directed down the inclined plane and the last normal to
the plane. Let u, v, w be the velocities of G resolved parallel to these
axes, and o, ®,, ®, the angular velocities of the body about these
axes. Let F, F" be the resolved parts of the frictions of the plane
on the sphere parallel to the axes G4, G'B, but taken negatively
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in those directions. Let k be the radius of gyration of the sphere
about a diameter, a its radius, and let the mass be unity. Leta
be the inclination of the plane to the horizon.

Whether the sphere roll or slide the equations of motion
will be

dw du

B i=—Fa m=—~F+gsina
P e < e (D).
—=Fa cn=—F
dt : dt

Eliminating F and F” from these equations and integrating we
have
u+ak—:am,= U,+gsinat

v—’ai:am,= V,_

where U, and V, are two constants determined by the initial
values of 4, v, @,, ®,.

The meaning of these equations may be found as follows. Let
Pbe the point of contact of the sphere and plane, let Q be a point
within the sphere on the normal at P so that PQ = (a'+£’0) a.
Then ¢ is the centre of oscillation of the sphere when suspended
from P. It is clear that the left-hand sides of the equations (3)
express the components of the velocity of @ parallel to the axes.
The equations assert that the frictional impulses at P cannot affect
the motion of @, and this also readily follows from Vol. 1. Chap. 1r,,
because @ is in the axis of spontaneous rotation for a blow at P.

237. The friction at the point of contact P always acts oppo-
site to the direction of sliding and tends to reduce this point to
rest. When sliding ceases the friction (see Vol. 1. Chap. 1v.) also
ceases to be limiting friction and becomes only of sufficient magni-
tude to keep the point of contact at rest. If sliding ever does
cease, we then have

u—aw,=0, v+a0,=0..ccccccrrrrnn.n. (4).

The equations (3) and (4) suffice to determine these final values
of 4, v, w, and @, Thus the direction of the motion and the
velocity of the centre of gravity after sliding has ceased have been
found 1n terms of the time. It appears that both these elements
are independent of the friction.

If the equations (4) hold initially the sphere will begin to move
without sliding provided the friction found from the equations (1),
(2) and (4) is less than the limiting friction. To determine this
point we must find the magnitude of the friction necessary to
prevent sliding. If the sphere does not slide we may differentiate
the equations (4); then substituting from (1) and (2) we find F'=0
and Ig =gsina.k'/(a'+ k'). But since the pressure on the plane is



136 . ' MOTION UNDEBR ANY FORCES. -

3
2 + kl
Supposing this inequality to hold the friction called into play will
£3vsays less than or not greater than the limiting friction, and
therefore equations (3) and (4) give the whole motion.

This method of finding the inferior limit to the value of u is
the same as that used in Vol. 1. Chap. 1v. in the corresponding
problem where the sphere rolls down the inclined plane along the
line of greatest slope.’

238. 1If the equations (4) do not hold initially or if the in-
equality just mentioned be not satisfied, let S be the velocity of
sliding and let @ be the angle the direction of sliding makes with
G4. To fix the signs we shall take S to be posmve while 6 may
have any value from — o to . Then

Scosb=u—aw,, Ssin@=v+ao,............ (5).

The friction is equal to pg cosa and acts in the direction oppo-

site to sliding, hence
F = pgcosacos b, F=-pgcosasm0.

The equations (1), (2) and (5) therefore give

g cos a, this requires that the coefficient of friction 4 > tan a

d(Scosf) __ 1+9—.)p,gcos a ws0+gsina]
dt '3 (6)
_d_(S;;—nﬂ) I+d.);4_qcosasm0 f
Expanding we find
ds
- =— 1+ 5 pgcosa+gs1nacos()
& == eee(T)
s a8 __ g e .
-9
If @ be not constant, we may eliminate ¢ and integrate with
regard to 6, this gives S'sinf=24 (ta.n —g) ...................... ®),

where n= (1 + a*/k*) pcot a, and 4 is the constant of integration.
If S, and 6, be the initial values of S and @ determined by equa-

) Substltutmg the value of S given by (8) in the second of equa-
tions (7) and integrating we find

(wd) (ol () ()"

n—1 n+l =~ n-1 + n+1 _"A t....(10),

the constant of integration being determined from the condition
that 6 =6, when ¢t =0. The equatlons (8), (9) and (10) give S and
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6 in terms of . 'The equations (3) and (5) then give u,v,», and w, -
in terms of ¢. . _

The second of equations (7) shows that df/d¢ has an opposite sign
to 6, hence 8 beginning at any initial value except + 7 continually
approaches zero. . It follows that, unless a is zero, 6 will be constant
only'when 6, =0 or + .

If n>1, 1.e. u> tan a. k*/(a* + #*), we see -from (8) that sliding
will cease when 6 vanishes. This, by (10) will occur when

20 b
S. Ccos 9 sin 9

=gsina n—1" n+41

The subsequent motion has already been found.

If n <1 we see by (8) that -S increases as @ decreases, so that
sliding will never cease. It also follows from (10) that @ vanishes
only at the end of an infinite time.

If 8,=0, sliding will never begin if » > 1, but will immediately
begin and never cease if n < 1.

239. Billlard Balls. The theory of the motion of a sphere
on an imperfectly rough horizontal plane is so much simpler than
when the plane is inclined or when the sphere rolls on any other
surface, that it seems unnecessary to consider this case in detail.
At the same time the game of billiards supplies many problems
which it would be unsatisfactory to pass over in silence. The fol-
lowing examples have been arranged so as both to indicate the
mode of proof to be adopted and to supply some results which may
be submitted to experiment. -

The result given in Ex, 1, was first obtained by J. A. Euler the son of the cele-
brated Euler, and published in the Mém. de I Acad. de Berlin, 1768. Most, possibly
all, of the other results may be found in the Jeu de Billiard par G. Coriolis, pub-
lished at Paris in 1835,

Ex. 1. A billiard-ball is set in motion on an imperfectly rough horizontal
plane, show that the direction and magnitude of the friction are constant through-
out the motion. The path of the centre of gravity is therefore an arc of a parabola
while sliding continues, and finally a straight line, The parabola is described with
the given initial motion of the centre of gravity under an acceleration equal to ug
tending in a direction opposite to the initial direction of sliding.

Ex. 2. If S, be the initial velocity of sliding prove that the parabolic path lasts
for a time 2 Sy/ug. From some experiments of Coriolis it appears that u=4 nearly.
If the initial velocity of sliding be one foot per second, the parabolic path lasts
therefore less than a twentieth part of a second.

Ex. 3. If P be the point of contact in any position and Q the centre of oscilla-
tion with regard to P, prove that the velocity of Q is always the same in direction
and magnitude. Thence show that the final rectilinear path of the centre of gravity
is parallel to the initial direction of the motion of Q and the final velocity of the
centre of gravity is five sevenths of the initial velocity of Q. If PP’ be the initial
direction of motion and ¥ the initial velocity of the centre of gravity and ¢ the time
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given by Ex. 2, prove that the final rectilinear path of the centre of gravity infer-
sects PP in g point P’ so that PP'=} V.

Ex. 4. A billiard-ball, at rest on an imperfectly rough horizontal table, is struck
by & cue in a horizontal direction at any point whose altitude above the table is &,
and the cue is withdrawn as soon as it has delivered its blow. Bupposing the cue
to be sufficiently rough to prevent sliding, show that the centre of the ball will
move in the direction of the blow and that its veloeity will become uniform and
equal tog EB after a time 5",}; Ta ;% where B is the ratio of the blow to the mass
of the sphere and a is the radius.

In order that there should be no sliding the distance of the cue from the centre
of the ball must be less than a sin ¢ where tan e is the coefficient of friction between
the cue and ball.

Ex. 5. A billiard-ball, initially at rest and touching the table at a point P, is
struck by a cue making an angle 8 with the horizon. Show that the final recti-
linear motion of the eentre of gravity is parallel to the straight line PS jeining P
to the point S where the direction of the blow meets the table, and the final velocity
of the centre of gravity is § Bein8 . PS/a in the direction of the projection of the
blow on the horizon, It will be noticed that these results are independent of the
friction.

Ex. 6. Measure ST=}%a cot g along the projection of the blow on the horizon-
tal table, then T'S measures the horizontal component of the blow referred to a
unit of mass, on the same scale that PS measures the final velocity of the centre of
gravity. Prove that during the impact and the whole of the subsequent motion the
friction acts along PT and that the whole friction called into play will be measured
by PT on the scale just mentioned. Thence show that unless u<$ PT/a the para-
bolic arc of the path will be suppressed. Show also that PT is the direction in
which the lowest point of the ball would begin to move if the horizontal plane were
smooth and the ball were acted on by the same blow as before. :

Motion of a Solid Body on a plane.

240. Historical SBummary. The motion of a heavy body of any form on a
horizontal plane seems to have been studied first by Poisson. The body is supposed
to be either bounded by a continuous surface which touches the plane in a single
point or to be terminated by an apex as in a top, while the plane is regarded as per-
fectly smooth. Poisson uses Euler’s equations to find the rotations about the
principal axes, and refers these axes ta others fixed in space by means of the
formule usually called Euler’s geometrical equations. He finds one integral by the
principle of vis viva and another by that of angular momentum about the vertical
straight line through the centre of gravity. These equations are then applied to
find how the motion of a vertical top is disturbed by & slow movement of the smooth
plane on which it rests. See the Traité de Mécanique.

In three papers in the fifth and eighth volumes of Crelle’s Jowrnal (1830 and
1832) M. Cournot repeated Poisson’s eguations, and expressed the corresponding
geometrical conditions when the bedy rests on more than one point or rolls on an
edge such as the base of a cylinder. He also considers the two eases in which the
plane ig (1) perfectly rough, and (2} imperfectly rough. He proceeds on the same
general plan as Poigson, having two sets of rectangular axes, one fixed in the bedy
and the other in space connected together by the formulae usually given for

g
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transformation of co-ordinates. As may be supposed, the equations obtained are
extremely complicated. M. Cournot also forms the corresponding equations for
impulsive forces. Those however which include the effects” of frietion do mnot
agree with-the equations given in this treatise.

In the thirteenth and seventeenth volumes of Liouville’s Journal (1848 and
1852) there will be found two papers by M. Puiseux. In the first he repeats
Poisson’s equations and applies them to the case of a solid of revolution on a
smooth plane, He shows that whatever angle the axis initially makes with the
vertical, this angle will remain very nearly constant if a sufficiently great angular
velocity be communicated to the body about the axis, An infaerior limit to this
.angular velocity is found only in the ease in which the axis is vertical. In the
second memoir he applies Poisson’s equations to determine the conditions of
stability of a solid of any form placed on a smooth plane with a principal axis at
its centre of gravity vertical and rotating about that axis. He also determines
the small oscillations of a body resting on a smooth plane about a position of
equilibrium.

In the fourth volume of the Quarterly Journal of Mathematics, 1861, Mr G. M.
Slesser forms the equations of motion of a body on a perfectly rough horizontal
plane and applies them to the problem considered at the end of Art. 261. He uses
moving axes, and his analysis is almost exactly the game as that which the author
independently adopted. ’

241. Oscillations about steedy motion. 4 solid of revolution rolls on a per-
JSeotly rough horizontal plane under the action of gravity. To find the steady motion
and the small oscillations.

Let G be the centre of gravity of the body, GC the axis of figure, P the point of

/
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contact. Let G.4 be that pincipal axis which lies in the plane PGC and GB the
axis at right angles to G4, GC. Let GM be a perpendicular from G on the hori-
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zontal plane, and PN a perpendicular from P on GC. Let R be the normal reaction
at P; F, F' the resolved parts of the frictions respectively in and perpendicular to
the plane PGC. Let the mass of the body be unity. )

Let 6 be the angle GC makes with the vertical, y the angle MP makes with any
‘fixed straight line in the horizontal plane. Then 4 and y are two of the angles used
.in Euler’s geometrical equations (Vol. 1. Chap. v.) to refer the moving azes GA, GB,

GC to an axis fixed in space, viz. the vertical. The third Eulerian angle ¢ is here
zero. The moving axes G4, GB, GC are therefore the same as those described in
Art. 21. Since GC is fixed in the body we have §,=w,, 6, =w,. Since ¢ =0 the third

of Euler's geometrical equations gives 0,=cos 8dy/dt. Remembering that the

angular momenta about the axes are hy=A4w,, h;=A4w,, hy=Cw, 88 in Art. 20, the
equations of moments of Art. 19 become

d d

450 - 40, % 0080+ Coguy == F' . GNcooovrrrrr ).

A%—C%%+Aw1%wso=—F. GM~-R.MP........... @).
dwg

ke S 00 @)

The first two of Euler’s geometrical equations give the relations between 6;, 0,
and the angles 4, y. Since 6,=w,, §=w, and ¢=0, these become

The Eulerian geometrical equations which refér the body to the axes ﬁxed in
space are not required. We may also notice that the equations (4) and (5) are suf-
ficiently obvious from the geometry of the figure to render any reference to Euler’s
equations unnecessary.

Let % and v be the velocities of the centre of gravity respeoctively along and per-
pendicular to MP, both being parallel to the horizontal plane. The accelerations
of the centre of gravity along these moving axes will be

du d¢/
E‘t' _li_t F --------------------------------------- (6)’
dv dy__,
a +u i Friiiiiiiiiiieiiii e -
And if 2 be the altitade of @ above the horizontal plane, i.e. z=GM, we have
d?z
E: -9 FR o (8).
Also since the point P is at rest, we have
U= GMwg=0..c.oveviiiiiiiiiiniiiinininn, 9),
v+ PNwg~ GNwy =0 ..cccovevriinniniiniininnnnnn., (10),
2=—GNcos 0+ PN sinf......cc.cceevvvvvinnninnnns (11).

These are the general equations of motion of a solid of revolution moving on a
perfectly rough horizontal plane. If the plane is not perfectly rough the first eight
equations will still hold, but the remaining three must be modified in the manner
explained in the next proposition.

When the motion is steady, we have the surface of revolution rolling on the
plane so that its axis makes a constant angle with the vertical. In this state of
motion, let 0=a, dy/dt=p, wy=n, GM=p, MP=gq, GN=¢, NP=1, and let p be the
radius of curvature of the rolling body at P. Then the relations between these
_ quantities may be found by substitution in the above equations.

‘When the form of the solid of revolution is given these equations will admit of
considerable gimplification, and may therefore be formed in any special case without
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much difficulty. Thus if the solid were a hoop or dise of radius a, we should have
GN=0, GM =z=asin 6, MP=a cos 6, and the radius of curvature p=0.

242. Suppose it were required to find the conditions that the surface may roll
with a given angular velocity n with its axis of figure making a given angle with the
vertical. Here n and a are given, and p; q, £, 7, p may be found from the equa-
tions to the surface. We have to find g, w,, wy, 4, v and the radius of the circle
described by G in space. Then eliminating F and R, we have F'=0, and

p2ein a (4 cos a~pt) —np (Csina+pn)—gg=0........cceees (12),
w=-pusina, w,=0,
u=0, v=-nn-¢{usina.

Let r be the radius of the circle described by G as the surface rolls on the plane.
Since G describes its circle with angular velocity u, we have rp=v, and hence

r= —ﬂ—fsm a.
I

Eiim.inating n we may also find 7 from the equation

pu3{dnsinacosa+ CEsin®a+r (C sina+pn)} =gqn.

For every value of n and a there are two values of x, which however correspond
to different initial conditions. In order that a steady motion may be possible, it
is necessary that the roots of the quadratic (12) should be real. This gives

(Csin a 4 pr)*n® +4gq sin a (4 cos a — pf)=a positive quantity.

If the angular velocity n be very great, one of these values of x is very great
and the other small, If the angular velocity be communicated to the body by
unwinding a string, as in a top, the initial value of w, will be small. In this case
the body will assume the smaller value of x, and we have approximatdy

99
n (Csina+pn)"

243, To find the small oscillation, we put 0=a+ ¢, dy/dt=p+ d|[//dt, Wg=n+ wy.

Then we have by geometry,

,l,=

t=GM=p+qf, Plil=q+(p—p) ¢,
GN=¢+pb'sina, PN=9+p# cos a,
and substituting in (5), (9), (10), (6), (7) respectively, we find
w=—psing - pcosald’ —sina —— a0’ u=p%z-,

v= -p.sinae—m;—(ycosaf+;;psin’a+npcosa)0’—sinaf%’/—qws',

o W
act ™
+u(uoosaE+#p81n’¢+nP°°8a)0'+wwa,

F—p'f;g + p? sin af + nun+2 sin apf —-

F'= —(ncosat—pp +/4psm’a+ﬂpcosa) —Bmaé——

Substitating these in equation (3) and mtegratmg, we have
(0+f)w,’:(pp—yfeosa—upsin’a—npoosa)no’—nsinaf(%/ ...... (A),
the constant being omitted because n, a and u are supposed to contain all the
constant parts of wy, 6, and dy/dt.
Again substituting in (1) and integrating, we have

{Cn-~ 2Apcosa+£(pu pcos af ~ usin®ap-npcosa)} 6’ - (A+£’)emadl/_£w '(B).
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Also substituting in (2), we have
(A+p’+q’)%+0’ {Au? (sina — cos?a) + Cnpcosa+(p —p)g
+ pt sina §g+ nung + u* 008 afp + nupp cos & + u? sin app )

"’( ~2A4 8in a 608 a+ On gin a +2Epu sin a+ npy} =0...(C).

+ wy {Cp 8in a + upn}
+{~ 4 sin a 008 au? + Cnyu 8in a + gq +8in audpt + nupn}

The last term of this equation must vanish since &, dy//dt, w, only contain
periodic terms. It is the equation thus formed which determines the steady
motion and gives us the value of x.

To solve these equations we may put

¢=Lein(+f),  FaMan(ies), w'=Nsin(+s).

If we substitute these in. (A), (B), (C) we shall get three equations to eliminate
the ratios L : M : N. Before substitution it will be found convenient to simplify
the equations first by multiplying (A) by ¢ and (B) by » and subtracting the latter
result from the former, and secondly by multiplying (A) by up/n and adding the
result to (C). We then obtain the following determinant,

~(44p"+g" )N+ (p-p)g | dusinasosa | Cu(psina ~ p)
+m (p*~ 4 008 da-gr) + 9
+nuC cosa
Cn—-24ucosa 4sina ¢t =0,
(p-£cosa—psin?a)p . _
—pncosa §eina (C+nY)

244, Bxamples. Ex, L To find the least angu]ar velocity which will riake
& hoop roll in & straight line,

In this case r is infinite and therefore u must be fero. It follows from the
equation of steady motion that g=0, or the hoop mmust be upright. We have
p=a, g=0, §=0, n==a, u=0, and C=24. The determinant becomes

(4 + a%) \*=2n? (24 + a?) — ag,
so that the least angular velooity which will make A a real quantity is givem by
2(C+a®)nd=ayg,

Let the hoop be an are, we have C=a?, and if ¥ be the least velocity of the
centre of gravity, this equation gives V3> }ag. Let the hoop be a dise, then
C=4%a? and we have V2> ay.

Ex. 2. A circular disc is placed with its rim restmg on a perfectly rough
horizontal table and is spun with an angular velocity 0 sbout the dismeter through
the point of contact. Prove that in steady motion the centre is at rest at an
altitude £%Q%/g above the horizontal plane, where % is the radius of gyration about
a diameter; and, if a be the inelination of the plane to the horizon, the point of
contact has made a complete circuit in the time 2# sina/Q. If the dise be slightly
disturbed from this state of sieady motion, show that the time of a small ogcillation

kK (k¥ +aY)sine } 5_

i8 2r {ga, 3k cos? a 4 a? sina,
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Ex.8. An infinitely thin circular disc moves an a perfectly rough horizontal
plane in such a manner as to preserve a constant inclination « to the horizon.
Find the condition that the motion may be steady and the time of a small oscillation,

Let the radius of the disc be a, and the radius of gyration about a diameter .
Let wy be the angular velocity about the axis, u the angular velocity of the centre
of gravity about the centre of the circle desoribed by it, » the radius of this circle,
then in steady motion :

Y]
2k2 + a?) ‘=k’poosa—£ cota, (2} ad)r= —Bacosa+2% cota.
( wy m e
If T be the time of a small oscillation
]
2-5’:-' (%2 + a%) = p? {k? (1 +2 cos?a) + a® sin%a} — nu cos a (642 + a%)+ 2n2 (24 + a%)- gasina.

Ex. 4. A heavy body is attached to the plane face of a hemisphere so as to form
a solid of revolution, the radius of the hemisphere being a and the distance of the
centre of gravity of the whole body from the centre of the hemisphere being 4. The
body is placed with its spherical surface resting on a horizontal plane, and is set
in motion in any manner. Show thaf one integral of the equations of motion is
4 sin%0 ‘;—f + Cuy (eos 0.+2) =eonstant whether the plane be smooth, imperfectly
rough, or perfectly rough.

It is clear that the first two terms on the left-hand side of this equation is the
angular moméntum about the vertical through G. Let this be ealled I, Since we
may take moments about any axis through @ as if G were fixed in space, we have
dI|dt=F .PM. But PM= -PN.h[a, hence eliminatirig F* by equation (8) and in-
tegrating, we get the required result.

"Ex. 5. A surface of revolution rolls on another perfectly rough surface of
revolution with its axis vertical. The centre of gravity of the rolling surface lies
in its axis, Find the cases of steady motion in which it is possible for the axes of
both the surfaces to lie in a vertieal plane throughout the motion.

Let 6 be the inelination of the axes of the two surfaces, P the point of
contact, GM a perpendicular on the tangent plane at P, PN a perpendicular
on the axis GC of the rolling body; F the friction, R the reaction at P; n the
angular velocity of the rolling body about its axis GC, u the angular rate at which
@G deseribes its cireular path in space, » the radius of this cirele. Then in steady
motion Musin@(Cn—Apcos)=-~F,. GM~R , MP,

R= ~ Mru3sin a4+ Mg cosa,

F= -~ Mru%coga— Mg sin a,

2. PN+psing . GN= ~rg,
where M is the wasa of the bedy.

245. General equations of motion. A surface of any form }oll: on a fized
horizontal plane under the action of gravity. To form the equations of motion.

Let G4, GB, GC, the principal axes at the centre of gravity, be the axes of
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reference and let the mass be unity. Let ¢ (£, #, )=0 be the equation to the
bounding surface, (£, n, {) the co-ordinates of the point P of contact.. Let (p, g, r)
be the direction-cosines of the outward direction of the normal to the surface at

the point £, , §, then p/%:q/%:r/%‘;_

Firstly, let the plane be perfectly rough. Let X, ¥, Z be the resolved parts
along the axes of the normal reaction and the two frictions at the point £, v, {, and
lot the mass of the body be unity. By Euler's equations we have

dwl —(B-C)wgwy=2Z - Y

"l’-(c PYTPREYS 77 2 SN (1).

| % (4-B)uwyu,=¢¥-nx
- Also the équntions of motion of the centre of gravity are by Art. 5,
i—u - vwy+ Wy =gp+ X

d
d—'t’-wl+y«.=yq S G SRR ().

dw
o Ut ve =gr+z
Also since the line (p, g, 7) remains always vertical (Art.9), °

d;
d'—‘t,:qwn"""i

Since the point (£, », {) which, for the moment, is fixed relatively to the moving
axes is also, for the moment, fixed in space, we have by Art. 8
U=u- Ny + {wy =0
V=0v-fw+£wg=0 % ccoceriiiiiiiiniiniiiineiinnanns . (4),
W=w- {wg+ 9w, =0
where U, V, IV are the resolved parts of the velocity of the point of contact P in
the positive directions of the axes.

246. Secondly, let the plane be perfectly smooth. The equations (1), (2), (3),
apply equally to this case, but equations (4) are not true. Since the resultant of
X, Y, Z is a reaction R normal to the fixed plane, we have

X=-pR, Y=-¢R, Z=-rR ...... eserenirnisansenee (5).

The negative sign is prefixed to R because (p, g, r) are the direction-cosines of
the outward direction of the normal, and it is clear that when these are taken posi-
tively, the components of R are all negative, If at any moment R vanishes and
changes sign the body will leave the plane. -

Since the velocity of G parallel to the fixed plane is constant in direction and
magnitude, it will usually be more convenient to replace the equations (2) by the
following single equation. Let GM be the perpendicular on the fixed plane and let
M@ =g, then A Y I  J (6).

It is necessary that the velocity of the point of contact resolved normal to the
plane should be zero, this condition may be written in either of the equivalent
forms Up+Vqg+Wr=0 }

dz|dt + (nwy — $wa) p+ ($w; ~ fwg) ¢ + (§wwy —~ 9wy) r=0,
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- 247. "Thifdly, let the body slide on an imperfectly rough pline. The equa-

tions (1), (2), (3).and (7) hold as before. If u be the_coefficient of friction the:

resultant of the forces X, Y, Z must make an angle tan-! x with the normal at the

(Xp+Yq+2r)? 1 .
pomtofcontact henece - X171 2 =1_H‘,(8).

* Also since the resultant of (X, ¥, Z), the normal at P and the direction of slid-
ing must lie in one plane, we have the determinantal equation

X(qW-rV)+Y(@U—-pW)+Z (V= qU)=0 eerueureren. e (9).

Since the friction must act opposite to the direction of sliding, we must have
XU+YV+ ZW negative. When this vanishes and changes sign, the point of con-
tact ceases to slide.

If the body start from rest we musé use the method explained in Vol. 1. Chap. 1v.
to determine whether the point of contact will begin to slide or not. The rule may
be briefly stated as follows. Assume X, ¥, Z to be the forces necessary to prevent
sliding. Then since u, v, W, w,, w,, w, are all initially zero, we have by differentiat-
ing (4) and eliminating the differential coefficiemrts of w, v, W, wy, wy, wg three linear
equations to find X, ¥, Z, in terms of the known initial values of (p, ¢, r) and.
(¢ 9, §). 'The point of contact will slide or not according as these values make the
left-hand side of equation (8) less or greater than the right-hand side.

In this way when the point of contact is fized for the moment the equations
(1), (2), and (1) are sufficient to find the initial values of X, Y, Z, i.e. the components
of the reaction at the point of contact. This is also the rule given in Vol. 1. Chap. 1v.
under the heading Initial Motions to find the initial value of a reaction, viz. we
differentiate the geometrical equations, and substitute from the dynamical equa-

tions, This seems the simplest method of proceeding, but we may also adopt”

either of the fouowmg methods.

The equations te find X, ¥, Z may be obtained by treating the forces as if they
were indefinitely small impulses. In the time d¢, we may regard the body as acted
on by an impulse gdt at G and & blow whose components are Xdt, Ydt, Zdt at P,
It is shown in the chapter on Momentum in Vol. 1. that we may consider these in-
succession. The effect of the first is to communicate to P a velocity gdt in a
direction normal to the fixed plane and outwards. If P does not slide, the effect of-
the blow at P must be to destroy this velocity.

In the chapter on Momentum in Vol. 1. certain formule have been deduced from
the ordinary equations of impact by which we can find the resolved initial velocities.
of the point of application of any impulse. A geometrical representation of these
formuls is also given by the help of an ellipsoid, E=constant, where E is the vis.
viva generated by the impulse. To avoid the repetition of this investigation we
may use these formule to find X, ¥, Z. We accordingly write u,=pg, v,=qg,
w;=rg and uy, v, w, 8ll equal to zero om the left-hand sides and (to suit the
notation of this article) change p, g,  on the right-hand sides into ¢, 9, {.
Geometrically the point of contact will not slide if the diametral line of the fixed

plane with regard to the ellxpsoxd called E makes a less angle with the normal than»

tan— x.

In any of these cases when p, g, r have been found, the inclinations of the prin-
cipal axes o the vertical are known. Their motion round the vertical may then be
deduced by the rule given in Art. 12. When u, v, w and the motions of the axes
have been found, the velocity of the centre of gravity resolved along any straight
line fixed in space may be found by resolution,

R.D. IL 4 10
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248. Some integrals of these equations are supplied by the principles of angunlar
momentam and vis viva. If the plane is perfectly smooth we have
Aw,p+ Buyg + Cuyr=a,
Aw?+ Bug? + Cw? + (dz/dt)* = B - 29z,
where a and p are two constants. If the plane is perfectly rough we have
Aw?+ Bug? + Cuy? + u + v + wi=8 - 292,

249. Bxamples. Ex. 1. A body resis with a plane face on an imperfectly
rough horizontal plane whose coefficient of friction is u, The centre of gravity of
the body is vertically over the centre of gravity of the face, and the form of the
face is such that the radius of gyration of the face about any straight line in its
plane through its centre of gravity is 4. The body is now projected along the
plane so that the initial velocity of its centre of gravity is v, and the initial rota-
tion about a vertical axis through its cenire of gravity is w,. If w, be very small,
prove that the centre of gravity moves in a straight line and its velocity at the end
of any time ¢ i8 vy—pugt. If w be the angular velocity at the same time prove that

= —»——,where k is the radius of gyration of the body about a vertical

through the oentte of gravity. [Poisson, Traité de Mecanique.]

Ex. 2. A body of any form rests with a plane face in contact with a smooth
fixed plane 80 that the perpendicular from the eentre of gravity & on the plane falls
within the face. If the body is then struck by a blow which passes through G or
begins to move from rest under the action of any finite forces whose resultant
passes through G, prove that it will not turn over, but will begin to slide along the
plane, even if the line of action of the force cuis the plane outside the base.
[Cournot.]

Ex 8. A heavy ellipsoid is placed on an inclined plane, touching 1t at & point
P whose co-ordinates referred to the principal diameters are (£, 9, {). Deduce from
Arts. 246 and 247 the initial values of the reaction at P when the plane is (1)
perfectly rough, and (2) perfectly smooth. Thence deduce the initial direction of
motion of the centre of gravity.

250. Oscillations on a rough horizontal plane. Whatever the shape of a
body may be we may suppose it to be set in rotation about the normal at the point
of contact with an angular velocity n. If this angular velocity be not zero, the
normal must be a principal axis at the point of contact, and yet it must pass
through the centre of gravity. This cannot be unless the normal be a principal
axis at the centre of gravity. If however n=0, this condition is not necessary.
There are therefore two cases to be considered.

Case 1. A body of any form is placed in equilibrium resting with the point C on
a rough horizontal plane, with a principal azis at the centre of gravity vertical, and
is then set in rotation with an angular velocity n about GC, A4 small disturbance
being given to the body, it is required to find the motion.

Case 2. 4 body of any form is placed in equilibrium on a rough horizontal plane
with the centre of gravity over the point of contact. A small disturbance being given
to the body, to find the motion.

251. Case 1. Supposing the body not to depart far from its initial position,
we have p, ¢, u, v, w, v}, w, all small quantities and r=1 nearly. Hence by (2),
when we neglect the squares of small quantities, we see that X, ¥ are also small,
and Z=~ g nearly. It follows by (1) that w, is constant and ... =n. Also £ and 4
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are small and ¢=h nearly, where A is the altitude of the centre of gravity above the
horizontal plane before the motion was disturbed. The equation to the surface
may, by Taylor’s theorem, be written in the form

er-3(04%01),

where (a, b, c) are some constants depending on the curvatures of the principal
sections of the body at the point C.
The squares of all small quantities being neglected, the equations of Art., 245

become —(B=C) nug= — gn~AY

d"” —(C- A) ney=hX+g¢

d—“—nv—gp+X,

dv
& t+nu 99+7%,

d
ap_ dg_
dt"'uq_wb E""’x""}’,
4 -nn+hwy=0, ©v-hw+nf=0,
E. 7 _E.
Pgty ISpte
Eliminating X, Y, 4, v, w, w, from these equations, we get

(A+hﬂ%+(4+3+2h’—0)nip—{(B—C’)n’+hg+h'n’}q=- (9+ ) +hn e

-(B+h’) £+ (4+B+20- C)n L 444 - Cyn+ b+ Hon?yp= (y+7m’)£+hn

It will be found convenient to express £, » in terms of p, g. The nght-hand
sides of each of these equations will then take the form
Lp+ Mg+ L’dp M z
To solve these equations, we must then assume p, g to be of the form
p=Pycos\t+ P, sin A\t
g=Qo 08\t -+ Q, sin At} *
If the tangents to the lines of curvature of the moving body at C be parallel to
the principal axes at the centre of gravity, these equations admit of considerable
simplification. In that case the equation to the surface may be written in the form

i (847,

where @ and ¢ are the radii of curvature of the lines of curvature, The right-hand
sides of the equations then become respectively

...(g...hnﬂ)cq{-hna%—l; and (_q+hn’)ap+lmcdq

dt’
To satisfy the equations, it will be sufficient to put
p=Fcos (\t+f), g=Gsin(At+f).

Tlua simplification is possible, because we can see beforehand that if we substi-
tute these values, the first equation will contain only sin (A\t-+£) and the second only
cos (\t+f). These trigonometrical terms may be divided out of the equations
leaving two relations between the constants F, G and \. Eliminating the ratio F/@,
we get the following quadratic to determine A2,

[(4+ )N +{B-C+h(h-c)in2+g(h-c)I(B+h)N+{d~C+h(h-a)}n?+g(h-a)]
=Nn?{4 +B+2h?- C - ha} {4+ B+ 2h*- C'- he}.

10—2
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If A\, Ay be the roots of this equation, the motion is represented by the
equations p=F,008 (\t+f,)+F,cos W"‘fa)}
g=G, 8in (\t+f;)+ Gy8in gt +fy))
where G,[F,, G,/F, are known functions of \,, A, respectively, and F,, F,, f;, f, are
oonstants to be determined by the initial values of p, g, dp/dt, dg/dt.
In order that the motion may be stable, it is necessary that the roots of this
quadratic should be real and positive. These conditions may be easily expressed.

252. Bxamples. Ex. 1. A solid of revolution is placed with its axis vertical
on a perfectly rough horizontal plane and is set in rotation ahout its axis with an
angular velocity n. If ¢ be the radius of curvature at the vertex, i the altitude of
the centre of gravity, k the radius of gyration about the axis, ¥’ that about an axis
through the vertex perpendicular to the axis of figure, show that the position of the
body will be stable if n > a"'*"’i’;w

Ex. 2. An ellipsoid is placed ‘with one of its vertices in contact with a smooth
horizontal plane. What angular velocity of rotation must it have about the vertical
axis in order that the equilibrium may be stable?

Result. Let a, b, ¢ be the semi-axes, ¢ the vertical axis, then the angular

velocity must be greater than ,\/i—g , Net-at "/"‘-b‘. [Puiseuz.]

a*+ b

Ex. 3. A solid of any form is placed in equilibrium with the point C on a
smooth horizontal plane, a principal axis GC at the centre of gravity being vertical,
and an angular velocity n is then communicated to it about GC.” A small disturb- -
ance being given, show that the harmonic periods may be deduced from the quad-
ratic (AN + E) (BA*+ F)=(4 + B - C) n®\3 + g* (p — p)? 8in?3 cos? 3,
where E=(B-C)n+g{(h—p)sin?3+ (h - p’) cos?s},

F=(4-C)n2+g {(h—p)0cos?s+ (h - p’) 8in3}.

Also & is the altitude of the centre of gravity, p, p’ are the principal radii of
curvature at the vertex, and 3 is the angle the principal axis G4 makes with the
plane of the section whose radius of curvature is p. [Puiseuz.]

258. Case 2. Returning now to the general problem enunciated in Art, 250, .
we prooeed to discuss the oscillations about equilibrium of a heavy body resting on a
rough horizontal plane with the centre of gravity over the point of contact.

Supposing the disturbance to be small, we have w;, w,, s, %, v, % all small
quantities. Hence when we neglect the squares of small quantities the equations
(1) and (2) of Art. 245 become respectively,

A%:yz— Y, B""” =$X-¢z, c"-‘?:sr-nx ............. (i),
du dv -
w=w+X,  =01+Y, Et-—yr-i-z .................... v (ii).

Let £, 79 £, be the co-ordinates of the point of contact in the position of equili-
brium, and let ¢{=§+¥, n=n+7, {=&+4. Then in the small terms of
equation (4) we may write §,, 7,, {, for £, », {. Henoce differentiating these and
eliminating X, Y, Z, u, v, w by help of oquntions (i) and (i), we get

“ +m.’+h.’)d - toto Son - b 5 'ft";"= —g (=30 e (i),
and two similar equations,
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Let py, gy, 7, be the values of p, g, » in the position of equilibrium. Then
&o/Po="10/g0=$o/7o=p, Where p is the radius vector from G to the point of contact.
Now in the small terms of equations (3) we may write pp, , pq,, pr, for £,, n,, &- Hence
equations (iii) beoome by snbstitution from the second and third of equations (3)

d .
4 ;:1 . ) r.p‘;‘{ — G (=30 erereerrrereeesereene (iv),

and two similar équations. At the time ¢ let p=p,+2’, g=¢,+¢, and r=r,+r.
Then since (py+p)2+(go+¢)*+ (ro+7)*=1, We have p,p’+ ¢’ +7;¥'=0. The
form of the surface being known we can find p/, ¢’, ¥ in terms of ¢, %', ¢, and thus
express nr - {q, {p—&r, &g~ np in the form —g (o - $q)=Lp'+ Mq.
The equations (iv) now become-

d a aq

. A %‘=7’0P av - $op Et—,—-pr'-i—Mq" ......................... (v),
and two similar equations.

Differentiating equations (3), and substituting for dw,/dt, dw,/dt, dw,/dt, from
(v), and for ¢ and d¥, /dt‘J from p,p' + ¢oq’ +7,”' =0, we get equations of the form

p""’ +G%’—q;—Hp +E¢

r"”’+a";’g_n'p'+x'¢

To solve these we put p'=Pcos (\t+f), ¢=@cos(\t+f), substituting and

ehmmntmg the ratios P/Q, we have the following quadratic to determine \®
F\3+H, GM+K =0 .

N - » FALH, GN+E | T (vi).

" Thus' by virtue of the relation existing between p’, ¢/, #, ench of these may be
represented by an expression of the form
P, 008 (A;t+f;) + Py 008 At +fy)-

Substitating these values in equations (v) we see that w,, wy, w; can each be

represented by an expression )

. 0,+E, cos (7“1" +/1) ¥ Eqc08 (At + 1),

where E,, E, sre known functions of P, P,...and ), \,, but Q,, @,, 0, are small
arbitrary quantities. By substituting in equations (3) and equating the coefficients
of cos(\t+f,) and cos (At +f,), we may find the values of E; and E, without diffi-
culty. And we also see that wé must have Q,/p,=Q,/q,=0,/r,, 80 that, of the three
Q,, 0,, 0, only one is really arbitrary. We have therefore but five arbitrary
constants, viz, P,, P,,f,,f,, and ,. Thése are determined by the initial values
of w,, wy, wy, ' and ¢'.

To find the motion of the prmclpal axes round the vertical, let ¢ be the angle
the plane containing GC and the verfical makes with the plane of AC. Then by
drawing a figure for the standard case in which p, ¢, r are all positive, it will be
seen that if 4 be the rate at which GC goes round the vertical,

BN T=1 =, 008 ¢+ wy tin ¢ = (Powy +gous) [T =15,
Subshtutmg for w,, w,, this takes the form
p=my+ Ny 008 (At +f3) + Nycos (At +£,),
where n;, N,, N, are all known constants.

In order that the equilibrium may be stable it is necessary that the roots of
the quadratic (vi) should both be real and positive, These conditions may easily
be expressed.
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These conditions being supposed satisfied, the expressions for p’, ¢, ¥ will only
contain periodical terms, and thus the inclinations of the principal axes to the
vertical will not be sensibly altered. But the expressions for w,, w,, ws may each
contain & non-periodical term, and if so the rate at which the principal axes will
go round the vertical will also contain non-periodical terms. The body therefore
may gradually turn with a slow motion round the normal at the point of contact,
The expressions for u, v, w will contain only periodic terms, so that the body will
have no motion of translation in space.

. ~ Motion of @ Rod.

254. When the body whose motion is to be determined is & rod, it is often
more convenient to recur to the original equations of motion supplied by
D’Alembert’s Principle. The equations of Lagrange may also be used with
advantage. These methods will be illustrated by the following problem.

4 uniform heavy rod, suspended from a fized point O by a string, makes small
oscillations about the vertical. Determine the motion,

Let O be taken as origin, and let the axis of z be measured vertically downwards;
let 2a be the length of the rod, b the length of the string. Let (I, m, n) (p, g, )
be the direction-cosines of the string and rod. Then I, m, p, q are small quantities
whose squares are to be neglected, and we may put n and r each equal to unity.
Let u be the distance of any element du of the rod from that extremity 4 of the
rod to which the string is attached, Let (z, y, z) be the co-ordinates of the element
du, then we have z=bl+up, Yy=bm+ug, z=b+th.ccceeerciirrrennnn ).

Let M be the mass of the rod, MT the tension of the string. The equations of
motion of the centre of gravity will be ]

s IO | ks B4 % 0=g-T.on(2).
By D’Alembert’s Principle the equation of moments round z will be
Zdu yg—: fti) =2du (yZ - zY)=Zdu (yg).

By equations (1) this reduces to
a%
[ du { —(b+u) ( ‘Z:: d:l’)} =2ag (b + ag).

Integrating, we get -
d’m &m _ 8a® diq

- : Il =
2ab (b i ) -2 T8 - 2 T = 20g (bm +ag),
which by equations (2) reduces to
d’m 4 d’q
bga Fgaga™ 99 e (3)-
Therefore by (2) and (3) the four equations of motion are
il dp dal 4 d’p
bd—t’+adt’ -gl, bdt’+3 Gt T IP e (4),

and two similar equations for m, ¢. These equations do not contain m or g, and
on the other hand the equations to find m and ¢ do not contain ! or p. This shows
that the oscillations in the plane 2z are not affected by those in the perpendicular

plane yz.
To solve these equations, put !=Fsin(\t+a), p=G sin (M +a),
we get WNF +aN'G=gF, bNF+4aNG=gG;
4a+3b 3g?
o N8_OTY0 N2 Y
oo N ab gN + 0,

and the values ot')L may be found from this equatxon.
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955. In order fo make a comparison of different methods, let us deduce the
motion from Lagrange’s equations. In this case we must determine the semi vis viva
T true to the squares of the small quantities p, g, I, m, we cannot therefore put r=1,
n=1. Since p*+¢?+r*=1, B+m?+n?=1, we have

r=1-}(p*+¢?), n=1-}@+md),
we must therefore replace the third of equations (1) by
e=bntur=b+u—-%b(B+m®)-3u(p®+q%. g

If accents denote differential coefficients with regard to ¢, as in Lagrange’s

equations we have
Ema/3=Zm (5303 + 200 p'u + p'*u?) = M (b3 + 2bl'p'a + § a’p?).

The value of Zmy'? may be found in a similar manner. The value of Zmz" is of
the fourth order and may be neglected. Hence the vis viva is

] 2T =33 (I3 + m'?) +2ab (I'p’ + (') + § a? (92 + ¢?).

Also we have U=—1}gb (1! +m3) - } ga (p?+ ¢*) + constant.

The equation t—% %1,' - %—f— '—idllj becomes bl” +ap” =-gl;
similarly we get b’ +4 ap” =~ gp.

These are the same equations which we deduced from D’Alembert’s Principle,
and the solution may be continued as before.

EXAMPLES*.

1. A uniform rod, moveable about one extremity, moves in such a manner as
1o make always nearly the same angle a with the vertical ; show that the time of &
~small oscillation is 2x \/g_;'if;—:ois*:’ a being the length of the rod.

2. If a rough plane inclined at an angle « to the horizon be made to revolve
‘with uniform angular velocity » about a normal Oz and a sphere be placed at. rest
upon it, show that the path in space of the centre will be a prolate, a common, or a
cartaté cycloid, according as the point at which the sphere is initially placed is with-
out, upon, or within the circle whose equation is z3+y3=(35 g sin a/2n%)z, the axis

Oy being horizontal. :
~ When the sphere is placed at rest on the moving plane, it should be notloed
that a velocity is suddenly given to it by the impulsive frictions,

3. A circular dise capable of motion about a vertical axis through its centre
perpendicular to its plane is set in- motion -with angular velocity . A rough
uniform sphere is gently placed on any point of the disc, not the centre, prove that
the sphere will describe a circle on the diss, and that the disc will revolve with
angular velocity ﬂ%ﬂ, where M2 is the mon?ent of inertia of the dise
about its centre, s is the mass of the sphere and r the radius of the circle traced
out.

4, A sphere is pressed between two perfectly rough parallel boards which are
made to revolve with the uniform angular velocities  and ' about fixed axes per-
‘pendicular to their planes. Prove that the centre of the sphere describes a circle
about an axis which is in the same plane as the axes of revolution of the boards and

* These Examples are taken from the Examination Papers which ha,ve been
set in the University and in the Colleges.
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whose distances from these axes are inversely proportional to the angular velocities
about them.

. Show that when the boards revolve about the same axis, their points of contact
will trace on the sphere small circles, the tangents of whose angular radii will be
Z g:g, a being the radius of the sphere and ¢ that of the circle deseribed by its

centre.

5. A perfectly rough circular oylinder is fixed with its axis horizontal. A
sphere being placed on it in a position of unstable equilibrium is so projected
that the centre begins to move with a velocity ¥ parallel to the axis of the cylinder.
It is then slightly disturbed in a direction perpendicular to the axis. If # be
the angle the radius through the point of contact makes with the vertical, prove
that the velocity of the centre parallel to the axis at any time ¢ is V cos f [}
and that the sphere will leave the cylinder when cos §=14.

6. A uniform sphere is placed in contact with the exterior surface of a perfectly
rough cone. Its oentre is acted on by a force the direction of which always meets
the axis of the cone at right angles and the infensity of which varies inversely as
the cube of the distance from that axis. Prove that if the sphere be properly
started the path described by its centre will meet every generating line of the cone
on which it lies in the same angle. Bee the Solutions of Cambridge Problems for
1860, page 92.

7. Every particle of a sphere of radms a, which is placed on a perfectly rough
gphere of radius ¢, is attracted to a centre of force on the surface of the fixed sphere
‘with a force varying inversely as the square of the distance; if it be placed at the
extremity of the diameter through the centre of foree and be set rotating about that
diameter and then slightly displaced, determine its motion ; and show that when it
Teaves the fixed sphere the distance of ifs centre from the centre of force is & root of
the equation 2023 - 13 (2¢ +a) z*+ 7a (2¢ + a)*=0.

8. A perfectly rough plane revolves uniformly about a vertical axis in its own
plane with an angular velocity n, a sphere being placed in contact with the plane
rolls on it under the action of gravity, find the motion.

‘Take the axis of revolution as axis of 2, and let the axis of z be fixed in the
plane. Let a be the radius, m the mass of the sphere; F, F’ the frictions resolved
parallel to the axes of 2 and z and B the normal reaction, The motions of the
‘axes (Art. 5) are given by 6,=0, 6,=0, ,=n. The equations of ‘motion (Arts, 4,
5, 22) are

u=dz/dt - an, v=2zn, w=dz|dt,
du/dt —vn=F|m, dv/dt+un=R/[m, dw/dt=~g+ F'[m,
dw,)dt - nwy= - Fafi®, dwyldt +nw=0, dw,/dt=Falk’,

8i1ce the point of contact has the same motion as the plane the geometrical
equations are u+4aw,=0, w-aw,=0. Solving these equations we find that the
.sphere will not fall down. If the sphere start from relative rest at a point in the
axis of z, we have n%=— gtan?i{l —cos(nt cosi)} where sini=./F. The sphere
will therefore never descend more than 5¢/n3 below its original position.

9. ‘A perfectly rough vertioal plane revolves with a uniform angular velocity u
about an axis perpendicular to itself, and also with a uniform angular velocity O
about a vertical axis in its own plane which meets the former axis. A heavy uni-
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form sphere of radius ¢ is placed in contact with the plane; prove that the position
of its centre at any time ¢, will be determined by the equa.tions
198 0o 750+ 2 3w (T e) =0,
z denoting the dlstanoe of the centre from the horizontal plane through the hori-
zontal axis of revolution, and ¢ that from the plane through the two axes.
Prove also that Tu=7c0 + 2ub, Tv+2ua=0, if a and b be the initial values of ¢
and 2, » and v those of d/dt and dz/dt,

10. A hoop 4GBF revolves about 4B its diameter as a fixed vertical axis. GF
is a horizontal diameter of the .same circle which is without mass and which is
rigidly connected to the circle; DC is a smaller concentric hoop which can turn
freely about GF as diameter. If 0, @', w, «', be the greatest and least angular
velocities about 4B, GF respectively, prove that 0 . {I'=w?- %

11, 04, OB, OC are the principal axes of & rigid body which is in motion
about a fixed point 0. The axis OC-has a constant inclination a to a line 0Z
fixed in space, and revolves with uniform angular velocity @ round it, and the
axis O4 always lies in the plane ZOC. Prove that the constraining oouple Las its
axis coincident with OB, and tha its moment is — (4 — C) Q?s8in acos a.

12, A heavy sphere rolls, without spinning, round the inside of a rough
horizontal circular wire, the mormal to the sphere at the point of contact being
inclined at a constant angle a to the vertical ; prove that the angular velocity of the
point of contact of the sphere is given by «w*=$ gtana/(h-bsin«) where & is the
radius of the ring and b that ef the sphere.



CHAPTER VL

NATURE OF THE MOTION GIVEN BY LINEAR EQUATIONS
AND THE CONDITIONS OF STABILITY,

Linear Differential Equations.

256. It has been shown in Chap. 111. that the problem of
determining the small oscillations of a system about a state of
steady motion is really the same as that of solving a corresponding
system of linear differential equations. In that chapter the forces
were assumed to have a potential, so that the differential equations
had a certain symmetry which simplified the solution. e now
propose to remove this restriction. Taking the differential equa-
tions in their most general form, but still with constant co-efficients,
we shall briefly discuss any peculiarities of their solution which
appear to have dynamical applications,

The chief object of this chapter is to determine the conditions
that the undisturbed motion should be stable. This resolves
itself into two questions (1) under what circumstances do positive
powers of the time enter into the expressions for the coordinates,
and what is the highest power which presents itself? (2) when
the roots of the fundamental equation cannot be found, what
conditions must the coefficients of that equation satisfy that
stability may be assured? In order to make our remarks on
these two questions intelligible it will be necessary to sum up a
few propositions which belong rather to Differential Equations
than to Dynamics. The discussion of the first question begins
therefore at Art. 268 though alluded to before that article. The
second question will occupy the next section,

257. Following the same notation as in Art. 111, let 6, ¢, &c.
be the co-ordinates of the system. Let the system be moving in
any known manner determined by 8=7£(t), ¢ = F(t), &e. We
now suppose the system to be slightly disturbed from this state of
motion. To discover the subsequent motion we put 6 =f(¢) + «,
¢=F(t)+y, &c. These quantities «, y, &c. are in the first in-
stance very small because the disturbance is small. The quantities
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-, y, &c. are said to be small when it is possible to choose some

quantity numerically greater than all of them which is such that
its square can be neglected. This quantity may be called the
standard of reference for small quantities.

258. To determine whether 2, y, &c. remain small, we substi-
tute these new values of @, ¢, &c. in the equations of motion.
Assuming, for the moment, that @, y, &c. remain small we may
neglect their squares, and thus the resulting equations will be
linear. The coefficients of =, dz/dt, d'x/dt’, vy, dy/dt &c. in these
equations may be either constants or functions of the time. Fol-
lowing the definitions in Art. 111, the undisturbed motion in the
former case is said to be steady.

259. We propose to consider first the case in which the system
depends on two independent co-ordinates or (as it is sometimes
called) has two degrees of freedom. This is a case which occurs
very frequently, and as the results are comparatively simple, it
seems worthy of a separate discussion. We shall then proceed to
the general case in which the system has any number of co-
ordinates.

260. Two degrees of freedom. The equations of motion of
a dynamical system performing its natural oscxlla.tlons with two
degrees of freedom may be written

4%, 3% 0 +A’§"+B’dy+a
d'z dz dy dy
Edt"+th+Gx+E,dt’+F +Gy
To solve these equations we put :
B nd __I d
=2 GrBge0 |V y=-[45+B5+0]V,

these suppositions evidently satisfy the first equation whatever V'
may be. Substituting in the second and using the symbol & to

represent :lz_t for the sake of brevity we find

A3+ B3+ C A +BS+C
ES+Fs+QG ES+Fé+@

This is an equation to find ¥ in terms of £, Since 3 enters
into the determinant in the fourth power, the value of ¥ when
found will contain four arbitrary constants. Thence we find
both # and y by means of the formule given above. It will be
observed that these require no operation to be performed except
differentiation. Thus, no matter how comphcated ¥V may be, the
values of # and y readily follow.

V=




‘156 NATURE OF THE MOTION GIVEN BY LINEAR EQUATIONS.

261. Let A(3) represent the determinant which is the operator
on V. Then making A (8) =0, we have a biquadratic to find 6.
If the roots of this biquadratic be m,, m,, m,, m,, we know by the
rules for solving differential equations that

V =Le™t + Le™t + Le™ + Lemé

‘where L, L,, L,, L,, are the four arbitrary constants.

If all the roots of the biquadratic are real and unequal, this is
the proper expression to use for V. But it takes a variety of
different forms when the biquadratic contains imaginary or equal
roots. - These however are described in the theory of differential
equations, and will be summed up in Art. 264.

262. Many degrees of freedom. The equations which
occur in Dynamics are in general all of the second order, but as
this restriction is not necessary in what fcllows, we shall suppose
the equations fo contain differential coefficients of any order.

Let there be n dependent variables represented by «, y, 2, &c.
and one independent variable represented by ¢. If the symbol &
represent differentiation with regard to £, the n equations to find
«, y, &c. may be written :

Fa® 2+ o O)Y+f®24...=0
Ju@® 2z +f Oy +fa(®z4...=0

To solve these, we use the analogy which exists between the.

rules for combining symbols of differentiation and those of common
algebra. Omitting for the moment any one equation, say the first,
and proceeding to solve the remaining n — 1 equations by the rules
of common algebra, we find the ratios '

1. -1 1
= y=ioce=&.=V......c..... 2),
ROR AL A A ®
where each of the equalities has been put equal to V. Here we
have used the letter I to stand for the minors of the determinant

O EIRAOR AN A RR [ ®).
f;l (8)l~fn (8)’ f” (8), oo

The suffix of the letter I indicates the number of the column
in which the constituent of the omitted equation lies whose minor
is required. ‘

Substituting these values of z, g, 2, &c. in the equation pre-
viously omitted, we obtain

This is an equation to determine a single quantity V as a
function of . 'We may call V the type of the solution. Supposing
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this equation to be solved by the usual rules, the values of 2,3, 2,
&c. are found by equations (2). Thus we have

e=LO)V, y=LEO)V,&..cccrcerrrerrerc(5).

These operators, 7, (8), 1, (8), &c., are all integral and rational
fu'ndwns of 8; so that when V is once known, all the other opera-
tions necessary for the complete solution of the equations are
reduced to the one operation of continued differentiation.

263. This arrangement of the solution of the differential
equations (1) has the advantage of expressing the results by means
of integral and rational functions of the symbol 8. In practice,
this will be found to introduce a great simplification into the
solution. The type V can always be immediately written down by
the usual rules for solving equation (4). It is sometimes very
complicated. In such cases it may be found very convenient to
be able to deduce the forms of z, y, 2z, &c. without having to per-
form any inverse operation.

264. Different types of the solution. If the roots of the determinantal

equation A (3)=0 be m,, m,, &o. the type ¥ is known to be
V:thm lt"l’L,C'm"t +oienne N
where L,, L;, &o. are arbitrary constants. When a pair of imaginary roots of the
form r+p /=1 occurs we replace the two corresponding i msgmary exponentw.ls
by the terms V=¢" (L cos pt+ Msin pt).
If equal roots occur, the value of ¥ thus given has no longer the full number
of constants. Supposing that we have a roots each equal to m, the type of the
solutlon which depends on these roots is
V= (Lo+Lyt+...+ L, t*~ 1) em™
where the L’s are a arbitrary constants, This may be put into the form
V= (L0+L1—+ ALe ! )e"“.

dme-1

If we have a equal pairs of imaginary roots of the form r+p J ~1 we replace
the a pairs of terms by

e (Lycospt+ M, smpt)+— "(Llcospt+Mlsmpt)+&c
Here, if we please, we may replace the differentiation with regard o » by a dxﬂeren
tiation with regard to p.

The peculiarity of the case of equal roots is the presence of terms containing
some power of ¢ a8 a factor. The ocourrence of a equal roots will in general indicate
the presence of terms containing all the integral powers of ¢ up to t*~1 in the
solution,

265. In order to deduce the corresponding values of z, y, &o. from these types,
we shall have, in the absence of equal roots, to operate with some integral and
rational function of 3 such as I (3) on an exponential real or imaginary.

I. We have the theorem - I(3)e™=1(m)e™,
go that when the roots of the equation A (3)=0 are all real and unequal we have
immediately z=L,I, (m;) €™t 4+ LI, (my) ™ + &e.,

y=L;I; (my) ™+ LT, (my) €™F + &e., -
z =&e.
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II. If X be any function of ¢, we have the theorem I (3)emX=e"I(5+71) X,
8o that when a pair of imaginary roots occurs, and we have to operate on the
product of a real exponential and a sine or cosine, we can immediately remove the
real exponential, and reduce the operator to that of continued differentiation of the
gine or cosine.

III. We have the theorem  f(8%) sin mt =7 (~ m?) sin mt¢,
Hence if we have to operate with F(3), we armnge the operator in the form
¢ (3%)+ 3y (3*). We then have F(3) sin mt=¢ (~ m7) sin mt+ y (— m?) m cos mt.

266. When the determinantal equation A (3)=0 has equal roots we have to
operate on expressions which contain some powers of ¢t. But since the operators
d/dt and d/dm or d/dr are independent we may use the theorem

d‘
1(5)4%8’“:;;{1("»)&“;.

Thus when the equation A (3)=0 has a roots each equal to m we may write
the solution given by equation (5) of Art, 262 in the form

-1
=L, I, (m) e""]-l-L,'% 1, (m) ™)+ ...+ L,y ﬂ% [T, (m) €™,

-1
Y=Lyl (m) ™1+ Ly g1, L2, (m) ™1t o4 Ly [, (m) ™)

z=4&o,

267. Ex.1, If there be two roots of the determinantal equation A (3)=0 each
equal to m, show by an actual comparison of the several terms that we have the
same solutions for z, y, &c. whether we use as operators the minors of the first or
the minors of any other row of the determinant A (3).

Ex. 2. The values of z, y, &c. are obtained from V by operating with certain
functions of 3, viz. I (8), I,(3), &e. If instead of these operators we umse u I, (3),
u I, (8), &c. where p is some function of 8 such as u=f(3), show that the effect is
merely to alter the arbitrary constants Ly, L;, &. Thence show that the solutions
are the same, whether there be equal roots or not, whatever set of first minors of
A (8) are used as operators.

268. An Indeterminate Case. If the roots of the deter-
minantal equation A (8)=0 be m,, m,, &c. we have shown that the
values of 2, y, &c. are given by

w=3LI (m)e™, y=3LI (m)e™, &c.

But we see at once that there 13 a case of failure. If one of the
roots of the equation A (8) =0 make all the minors, I, (m), I, (m),
&c. equal to zero, the solution becomes incomplete. One constant Z
disappears from the solution. If all the minors of only one row
vanisEed, we could find the values of 2, y, z, &c. by choosing as our
operators the minors of some other row. But this cannot be done
if all the minors of all the rows are zero*.

* See also a paper by the author in the Proceedings of the Matliemqtical Society,
1883.
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269, We shall now prove that this indeterminate case cannot occur unless the'
determinantal equation A (3)=0 has equal roots. To show this, we differentiate
equation (3) of Art, 262, We find

dA (8 d dj d

da()"Ill fll_l_Iu f1’+&c.+I2l f!l_l_&c’
where the letter 7 stands for the minor of that constituent of the determinant A (3)
which is indicated by the suffix. We notice that the right-hand side of this equa-
tion vanishes when all the first minors are zero, Thus the equation-A (3)=0 must
have at least two equal roots. In the same way, if the second minors are all zero
also, any first minor has two equal roots, and therefore the original equation has
three equal roots.

270, We may notice two obvious results. (1) If all the first minors of a
determinant have a root a times, the determinant has the root a+1 times at least.
(2) If a determinant have r equal roots, and all its first, second, &c. minors vanish
for these roots, then each of the first minors has the equal root r—1 times, each of
the second minors r— 2 times, and so on,

271. 'We may now consider the following general problem:—

Let the determinant A (8) have a roots each equal to m. Let B of
these roots make every first manor of A (8) equal to zero. Let y of
these last make every second manor equal to zero, and so on. It is
required to state the general form of the solution and to explain how
the a constants in that solution are to be found.

272. Solution with a single type. First, let us consider
the a roots which are equal to m. It has been proved in Art. 266,
that the part of the solution which depends on these may be
written in the form

a:=L°[I‘(m)e"“] +L1-cm [Ix(m)em] +.ooF L -1 dF_l [Ix(m)em]:

with similar expressions for y, z, &c.

If these first minors are finite, these formul® contain powers
of ¢ from ¢ to t*~}, and thus supply the a constants which belong
to the a equa.l roots. If the first minors have 8 roots equal to m,
I (m), I,(m), &c., and their differential coefficients up to the
(B—l) th are all zero. In this case the powers of ¢ extend only
to t*~#-1, and thus these formul® do not supply the full number
of constants.

When all the first minors have the root a times and all the
second minors have the root B times, we know by Art. 270 that
a— -1 cannot be negative.

273. Solution with a double type. To find the proper
forms for z, y, &c. when the first minors are all zero, we return to
the analogy between operations and quantities alluded to in Art.

262. We now reject any two of the equations (1), say the first
two. Solving the remaining n—2 equations we can express all
the co-ordinates z, u &c. in terms of # and y, thus obtaining a
series of equatlons of the form

z=¢Oz+¥ Oy
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where the functional symbols are really second minors of the
determinant A(8). We now substitute these expressions for z;.
u, &c. in the two omitted equations. These two equations will be.
satisfied provided « and y have any values which make I(8)z=0
and I(8) y=0, where I (8) is any first minor of A (8).

We notice also that these two equations are satisfied by the
separate parts of these values of z, u, &c. which arise from z and
from y. We may therefore arrange the solution so as to find
these two parts separately, and then finally add the results. The
following arrangement will be found convenient in practice.

When the first minors are all zero, reject some one of the given
differential equations (1), say the first. We have now n—1 equa-
tions to determine the n co-ordinates. Putting y=0 in these
equations we find «, z, &c. in terms of a single type £ where £
satisfies the equation 7, (8) £=0. Here I, represents the minor of
the second constituent of the first line of the determinant A(d).
We write the SOll.lthll thus found in the form

: J.DE  y=0 2=J,0)§ &
where the opera.tors are the second minors of the constituents in
the first two lines of A(8). Next, putting =0 instead of y

in the equations after the first, we obtain another solution, by

which #, 2, &c. are expressed in terms of another single type 7.
Here 7 satisfies the equation I, (8) # =0, where I, is the minor of
the first constituent of the first lme of A (3). We write the solu-
tion thus found in the form

z=0, y'—'Jn(s)"” z=J”(8)17,&c
Adding these two solutions together, we have the following values
of z, y, z, &ec.

—Ju(s) £ y=J.0)9 z=J, (®) €+ I (0) m, &e.
These evidently satisfy all the equations except the one rejected.
But this equation also is satisfied because by hypothesis we take
those parts only of these solutions which make all the first minors
equal to zero.
If the minors which the types £ and 5 are to satisfy contain
the root 8 = m, B times, we have therefore

E=(Gi+Gt+... + Gg#*Y) €™,
‘I]—(H +Ht+ +Hp-1tp-l)€”
274. The corresponding values of , y, &c. are found by sub-
stitution, and may be wntben in the form

z=G,[J, (m)e™ ]+G,d PA (m)e"]+...+G,,_1W—_1[Ju(m)e~],

with similar expressions for y, &c.

The peculiarity of the solutions which are derived from the
double type £, 5 is that the corresponding terms in the expressions
for & and y have independent constants.
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If the second minors which form the operators are all finite,
these formul® contain powers of ¢ up to ##~! and supply 283 con-
stants. But if these second minors contain ¢ roots equal to m,
the powers of ¢ extend only to t#~*~1, and thus the full number of
constants has not been found.

275. Solution with a triple type. Thirdly, we have to find the solution when
the second minors are zero as well as the first minors. In this case the solation
just found becomes again insufficient. To determine the proper forms of z, y, 2, &e.
we now reject any three of the differential equations (1) of Art. 262, and proceed as
before. We thus have n—3 equations to find the n co-ordinate, We see at once
that we can express all the co-ordinates in terms of any three we please, say z, ¥, z.
‘We thus have three times as many arbitrary constants as there are roots equal to m.

In the same way as before we can express the solution in terms of a triple type
¢, 9, {~ Putting y and 2z equal to zero, we find the remaining co-ordinates, viz,
z, 4, &c, in terms of a single type £, Putting x and z equal to zero (instead of y
and z) in these n — 3 equations we obtain a second solution depending on another
single type . Lastly, putting z and y equal to zero we obtain a third solution
depending on {. Adding together these three solutions we find that all the co-
ordinates may be expressed by means of operators which are really third minors of
the determinant A(3). The subjects of operation are the three independent _
functions £, », {. These are such that if I (3) be any of the seeond minors of the
constituents of the three omitted equations I(8)¢=0, I(8)n=0, I(3)¢=0. If
these contain the root §=m, y times, each of the three £, 4, § will be expressed by
a series of the form (Kot Kyt +... 4+ K, _qtv~7) ™,
but with independent constants.

276, 'The number of constants. Each of the sets of values of z, y, &e¢. given
in Arts. (272), (273), and (275) is, of course, a solution. The complete solution is
really the sum of these partial solutions, provided it has the proper number of
constants. We appear, however, to have toe many constants. We must therefore
examine these, and determine what terms are absolutely zero and what terms are
repeated in the several partial solutions,

‘We begin with the solution derived from the type V, Art. (272), by the help of
the first minors. 8ince the first minors have 8 roots each equal to m, the first 8
terms of each of the expressions for z, y, &c. are easily seen to be zero. Consider
the solution derived from any term L,, where % lies between 8—1 and 28. In the
case of the variables 2 and y they are expressions of the form

(do+ Ayt +...+ Ay _gtv—F) ™,

All these are evidently included amongst the terms derived from £, # by the help
of the second minors, The corresponding terms in ¢, u, &c. must be related to the
terms in 2, y by the formula given in Art. (273), and are therefore also included in
the series derived from £, 7. Lastly, consider the solution derived from the terms
from Lgg to L, ;. They include powers of ¢t from ¢# to t*~1=8, These a-28
terms are not included in the terms derived from ¢ and 5, and they supply a ~28
arbitrary constants.

Secondly, we turn our attention to the solution derived from the double type
£, 7 by the help of the second minors (Arts. 273 and 274). Each of these second
minors has 4 roots each equal to m ; hence, by the same reasoning as before, the
first  terms of the series for « and y are zero, and the highest power of tis -1+
instead of §—~1. In consequence of this, the terms of the series derived from the

R. D. II. ) ] 11
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single type ¥, and not included in those derived from the double type £, %, now
extend their powers of ¢ from A=Y {0 t~1~B, There are therefore a— 28+ such
terms instead of a — 28.

The same reasoning applies to all the other partial solutions derived from the
triple and higher types, We therefore conclude that the partial solution derived
Jrom a single type by operating with the first minors of the first row of the fundamental
determinant supplies a—28++y terms not included in the solutions which follow.
These supply as many arbitrary constants. The partial solution derived from a
double type by operating with the second minors of the two first rows of the funda-
mental determinant supplies B — 2y + 8 terms not included in the solutions which follow.
These supply twice as many constants. The partial solution derived from a triple
type by operating with the third minors of the three first rows supplies y — 28+ e terms
and thrice as many constants, and so on.

" Thus suppose (for ezample) the fourth minors are not all zero; the number of
constants supplied by each of the several partial solutions is indicated by the terms of
the series (e-28+7)+2(8~2y+3)+38 (v-23)+43.

If none of the terms of this geries are negative, we have obtained a series of
partial solutions containing the proper number of constants. This point we now
proceed to discuss.

277. If a determinant contain the root just a times, if the first minors of the
. two first constituents of the two first rows contain the root just § times, if the second
minor of these four constituents contain the root just y times, then a-28+ is
positive.

To prove this, let A be the determinant, I, I,, J;, J; the four first minors, A,
the second minor. Then we know that AA,=I,J;—1;J;. The left-hand side
contains the root just a++ times, the right-hand side contains the root at least 28
times. Hence a+v - 28 is positive.

In the same way we may show, on similar suppositions, that 8'~ 2y + 3 is positive,
and so on. :

278. Example. Solve the differential equations
(3-1)2(3+1)z-(d-1)(3-2)y+(5- 1)z=0}

3(0-1)22-(3-1)(8-3)y+2(8-1)2=0
(@-1P2z+(3-Dy+(3-1)2=0
The fundamental determinant (Art. 262) is A (8)= —(3—1)%. This determinant
(Art. 271) has six equal roots {a=6), every first minor has the root three times
(8=3), and every second minor has the root once (y=1). The part of the solution
depending on a single type (Art. 276) will supply a—28+ (i.e. one) constants,
These accompany the highest powers of ¢t which occur in the type, one constant for
each power (Art. 272). The part of the solution depending on a double type will
supply 2 (8-2v) (i.e. two) constants. These accompany the highest powers of ¢
which occur in this type, two constants to each power. The part of the solution
depending on a triple type will supply 3 (i.e. three) constants which again accom-
pany the highest powers of ¢, three constants to each power. To obtain the full
number of constants it is necessary in this example to retain only the one highest
power of ¢ which occurs in each type. -
The single type is £{=(&ec. + 4t%) ¢* by Art, 264, Taking the minors of the first
row of A(3) we have by Art. 262 =~ (5-1)3¢, y=- (3-1)3¢, 2=3 (8- 1)3¢&.
To find the part of the solution which depends on a double type we reject the
first equation (Art. 273). Putting z=0 we find y=(§-1)¢, z=- (6-1)¢ where
(3-1)2¢£=0. Putting y=0 we find z=(5-1)y, z=-(8-1)>y where (3-1)*9=0,
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The double type is therefore £=(&ec. + Bt?) ¢!, n=(&c.+ct?)e'. The values of the co-
ordinates are 2=(0-1)n, y=(0-1)¢ 2=-(3-1)£-(3-1)*9.

To find the part of the solution which depends on a triple type we reject the two
first equations (Art. 275). The three partial solutions are then first, z=0, y=0,
z=De¢*; secondly, =0, y=Ee', 2=0, thirdly, z=F¢', y=0, z=0. The sum of
these is the solution derived from a triple type.

Adding up the solutions which are derived from all the different types and sim-
plifying the constants we have o

z=(F+Ct+At?)e,, y=(E+Bt+At})e, z={D-Bt-A4(t2+2¢t)}e"

279. Conversely, suppose it is given that we have such a solution as that described
in Art. 276, let us enquire what minors must be zero.

Let it be given that the solution contains terms depending on a triple type con-
taining (y-1) powers of ¢ accompanied by independent constants in some three
co-ordinates. Putting any two of these co-ordinates equal to zero the differential
equations are satisfied by a solution depending on a single type. Thus we have
7 equations containing n — 2 co-ordinates all satisfied by values of the co-ordinates
which contain powers of ¢ up to the (y—1)th. This shows that all the second
minors which can be formed from these equations must be zero and each of these
minors must contain the root y times.

From this we infer by Art. 270 that every first minor must contain the root y+1
times. But let us suppose that the given solution contains also terms derived from
a double type which have powers of ¢ extending up to the (8-~ - 1)th with inde-
pendent constants in some two of the co-ordinates. Reasoning in the same way as
before, we see that every first minor must have the root (83— —1) times. These
must be in addition to the ¢+ 1 roots already counted, because we may regard the
given solutions derived from the double and triple types as solutions which depend
on unequal roots and then make these roots become equal in the limit. It follows
therefore that every first minor has the root 8 times.

‘We now infer by Art. 270 that the determinant (4) of Art. 261 must have the
root B—1 times. But if the given solution also contains terms derived from a
single type with powers of ¢ extending to the (a - 8—1)th, we deduce by the preced-
ing reasoning that the determinant (4) must have the root « times,

280. We may notice as a corollary of this theory that the solution cannot contain
terms in which the high powers of ¢ depend on a larger type than the low powers
of t. For example, if the term ¢"e™ occur accompanied by k independent con-
stants, this term must be part of a solution derived from a kth fype. It follows
that all the lower powers of ¢ whieh multiply the same exponential will be part of
the same type and must be accompanied by at least k¥ independent constants,

231. Condition that all powers of ¢ are absent. In some
dynamical problems it is well known that, though the fundamental
determinant has a equal roots, yet there are no terms in the solution
with powers of t. We may now determine the conditions that this
may occur.

We see by Art. 272 that, unless every first minor has the root
~ a—1 times at least, a solution can be deduced from the first minors

which has some power of ¢ greater than zero in the coefficient.

Again, unless every second minor has the root a — 2 times at least,

a solution can be deduced from the second minors with some power
11—2
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of tin the coefficient. On the whole, we infer that when a equal
roots occur in the determinant, and the terms in the solutvon with t
as a factor are to be absent, it 18 necessary as well as sufficient that
all the first, second, dc. minors up to the (2 — 1)th should be zero.

282. Dynamical Meaning of the Types. We shall now
consider how the three different types of solution given in Art. 264
indicate different kinds of motion. Let us begin with a real root.
In this case every co-ordinate has a term of the form Mem: If m
be positive this term will become greater as time goes on, and the
system will therefore depart wingy from its undisturbed state,
and our equations will represent only the manner in which the
system begins its travels. If m be negative this term will gradually
dwindle away and the motion will finally depend on the other
term in the solution.

Similar remarks apply whenever we have a real exponential
whether multiplied by a trigonometrical function or not. We may
‘therefore state as a general principle, subject to some reservations
in the case of equal roots which will be presently mentioned, that
the necessary and sufficient conditions of stability are that the real
roots and the real parts of the imaginary roots should be all
negative or zero. A simple rule to determine whether this is the
case or not will be given in another section of this chapter.

283. Effect of equal roots on stability. When there are
equal roots in the determinantal equation we have seen that the so-
lution in general has terms which contain powers of ¢ as a factor.
The important question for us to determine is the effect of these
terms on the stability of the system. If m be positive the presence
.of a term Mt‘e™ will of course make the system unstable. But if m
be negative, this term can never be numerically greater than

q
M (é%;\) . If m be very small the initial increase of the term may

make the values of z, y, &c. become large, and the motion cannot
be regarded as a small oscillation. But if the system be not so

disturbed that M (&)’is large, the term will ultimately disappear

and the motion may be regarded as stable. If m be wholly
imaginary and equal to n,/—1, this term will take the form
t*sin nt and will of course cause the system to be unstable.

Thus equal roots do not disturb the stability if their real parts
are negative, but do render the system unstable if their real parts
are zero. v

284. It is clear from this that the whole character of the
motion depends on the nature of the roots of the determinantal
equation A (§) =0. If we can solve this equation and find the
roots, we of course know immediately the nature of the motion.
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Buf if this cannot be done we must have recourse to the Theory
of Equations to determine whether the roots are real or imaginary,
and whether any roots are equal or not. The theorems of Fourier
and Sturm will be of use in the equations of the higher orders, but
in many dynamical problems we have only to deal with two co-
ordinates, and we have therefore to examine the roots of the
biquadratic in Art. 260.

Rules by which the analysis of a biquadratic is made to depend
on the solution of a cubic are given in most treatises on the
Theory of Equations; but as this form is not convenient in prac-
tice, a short analysis will be given here for reference.

285. .Analysis of a blguadratic. Let the biquadratic be
ax? + 4bx® + 6cx? + 4dz+ =0,
80 that the invariants are I=ae - 4bd + 3¢2, and J =ace + 2bcd — ad? — eb? —¢3. This
last may also be written as a determinant. It will gewmerally be found convenient
to clear the equation of the second term. Let the equation so transformed be
att - 2aHE+ aGE — aF =0, 4

where a?H=3 (* - ac) and a®G'=4 (2b% - 3abc+a’d). By using the invariants or by
actual transformation it is easy to see thad

I=}a*H - a’F and J=4%a3H? - %a%G? - }alH.

Let A be the discriminant, i.e. A=1I3-27J7% then it is proved in all' books on
the theory of equations that if A is negative and not zero, the biquadratic has two
real and two imaginary roots. If A is positive and not zero the roots are either all
real or all imaginary. .

Usually we can distinguish between these two cases by ascertaining if the bi- -
quadratic has or has not a real root, Thus if a and ¢ have opposite signs, one root
is real and therefore all the roots are real. In any case we can use the following
criterion. Having cleared the given biquadratic of the second term we may write
the resulting equation in. the form (£ - H)?+ G¢=K, )

It S, be the arithmetic mean of the mnth powers of the roots, we have by
Newton’s theorem on the sums of powers, S, =0, S;=H, 4S;=-3G and K=8,- S,
If all the roots are real we have S, positive and by a known theorem in **in-
equalities” S, is greater than S,2. Hence H and K are both positive. If all the
roots are imaginary, let them be r+py/—1 and --r+q,/—1. Then

H=8;=r-}(p*+4°),

E=8,-8=}(p*-q%%- 2*(p*+¢%).
If H is positive or zero we see that K is negative. The criterion may therefore be
stated thus. If H and K dare both positive the four roots are real. If either is
negative or zero the four roots are imaginary.

If the discriminant A is zero but I and J not zero, it is known that the biquad-
ratio has two roots equal. If two of the roots are real and equal and the other two
imaginary we see (by putting ¢ =0} that if H is positive or zero, K must be negative.
The criterion therefore is, if H and K are both positive all the roots are real, if H or
K is megative or zero, two roots are real and two are imaginary. If G is zero, there
are then two pairs of equal roots. In this case K is zero and these roots are all
real if H is positive, all imaginary if H is negative.

Lastly let the discriminant A be zero and also both I and J zero. The biquad-
ratic has three roots equal and therefore all the roots are equal. If H be also zero
the four roots are all equal and real.
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Ex. I the discriminant of a biquadratio be positive, clear the equation of the
term containing the third power in the usual manner, and then arbitrarily erase the
term containing the first power. If both the roots of the quadratic thus formed be
real and the sum of the roots be positive, then all the four roots of the biquadratic
are real. If either contingency fail the four roots are imaginary.

Conditions of Stability.

286. It has becn shewn that the determination of the oscilla-
tion of a system can be reduced to the solution of a certain
determinantal equation, which has been represented in Art. 262,
by A=f(8)=0. In many cases it is impracticable to solve this
equation and therefore the motion cannot be properly found. If
however we only wish to ascertain whether the position of equili-
brium or the steady motion about which the system is in oscillation
is stable or unstable we may proceed without solving the equation.

It is clear from Art. 282 that the conditions of stability are
that the real roots and the real parts of the imaginary roots should
all be negative. It is now proposed to investigate a method to
decide whether the roots are of this character or not.

287. Taking first the case of a biquadratic; let the equation
to be considered be
f@)=az'+b+c*+dz+e=0,
where we have written » for 8. Let us form that symmetrical
function of the roots which is the product of the sums of the roots
taken two and two. If this be called X/a%, we find*

X=bed—ad*—eb’=4%(2a b c'
bo di.
cd2e#

* This value of X may be found in several ways more or less elementary. If
we substitute z=E <+ Z in the given biquadratic and equate to zero the even and
odd powers of Z, we have

aZ4+(6aE’+3bE+c)Z’+aE‘+bE3+cE’+dE+c=0}
(4aE +b) Z3 + (4aE® + 3bE2+2cE +d) Z=0) "
Rejecting the root Z=0 and eliminating Z we have
. 64a3ES+ -..... + bed — ad? ~ 13 =0,

where only the first and last terms of the- equation are retained, the others mnot
being required for our present purpose. Since z=E=+Z it is clear that each value
of E is the arithmetic mean of two values of 2. We have an equation of the sixth
degree to find E because there are six ways of combining the four roots of the
biquadratic two and two. The product of the roots of the equation in E may be
deduced in the usual manner from the first and last terms, and thence the value
of X is seen to be that given in the text.

If we eliminated E we should obtain an equation in Z whose roots are the
arithmetic means of the differences of the roots of the given equation taken two
and two, If we put 42%2=¢, we obtain by an easy process the equation whose roots
are the squares of the differences of the roots of the given equation f{z=0).
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It will be convenient to consider first the case in which X is

finite. Suppose we know the roots to be imaginary, say a + pJ:_l,
and B+¢./—1. Then '

Xja'=42B {2 +8)"+(p +9/Ha +B) +(p— )}
Thus, aB always takes the sign of X/a, and a + 8 always takes the
sign of —b/a. The signs of both a and B8 can therefore be deter-
mined; and if a, b, X have the same sign, the real parts of the
roots are all negative.

Suppose, next, that two of the roots are real and two imagi-
nary. Writing ¢’ J—=1 for g, 8o that the roots are a + p J—=1 and
B £ ¢, we find :

X/a' =438 {[(2+ B)* + p* — ¢"T + 40°¢"}.
Just as before, a8 takes the sign of X/a, and a + 8 takes the sign
of —b/a. Also, 8°— ¢* takes the sign of the last term e/a of the
biquadratic. This determines whether 8 is numerically greater or
less than ¢'. 1If, then, a, b, ¢, and X have the same sign, the real
roots and the real parts of the imaginary roots are all negative.

Lastly, suppose the roots to be all real. Then, if all the
coefficients are positive, we know, by Descartes’ rule, that the
‘roots must be all negative, and the coefficients cannot be all posi-
tive unless all the roots are negative. In this case, since X is the
product of the sums of the roots taken two and two, it is clear that
X /a will be positive.

Whatever the nature of the roots may be, yet if the real roots
and the real parts of the imaginary roots are negative, the biquad-
ratic must be the product of quadratic factors all whose terms are
positive. It is therefore necessary for stability that every coeffi-
cient of the biquadratic should have the same sign. It is also
clear that no coefficient of the equation can be zero unless either
some real root is zero or two of the imaginary roots are equal and
opposite, '

Summing up the several results which have just been proved,
we conclude that if X and e are finite, the necessary and sufficient
conditions that the real roots and the real parts of the imaginary
roots should be negative are that every coefficient of the biquadratic
and also X should have the same sign.

288. The case in which X =0 does not present any difficulty.
It follows from the definition of X, that if X vanishes two of the
roots must be equal with opposite signs, and conversely if two
roots are equal with opposite signs X must vanish. Writing
—z for z in the biquadratic and subtracting the result thus
obtained from the original equation we find 6z°+dz=0. The
equal and opposite roots are therefore given by z=+./—d/b. If
b and d have opposite signs these roots are real, one being positive
and one negative. If b and d have the same sign, they are a pair
of imaginary roots with the real parts zero. ‘
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The sum of the other two roots is equal to —b/a and their
product is be/ad. We therefore conclude that if X =0, the real
roots and the real parts of the imaginary roots will be negative
or zero if every coefficient of the biquadratic is finite and has the
same sign.

289. If either a or e vanishes, the biquadratic reduces to a
cubic, see note to Art. 105. Putting e zero, we have

X/a*d =bc—ad.

If the coefficients have all the same sign it is easy to see that
it is necessary for stability that bc — ad should be positive or zero.

If a and e be not zero and one of the two b, d vanish, the other
must. vanish also, for otherwise X could not have the same sign as
a. In this case X vanishes, and the biquadratic reduces to the
quadratic : az* +cz*+e=0.

As this equation admits of an easy solution, no difficulty can
ariSe in practice from this case. It is necessary for stability that
the roots of the quadratic should be real and negative. The con-
ditions for this are, firstly the coefficients g, ¢, ¢ must all have the
same sign, secondly that ¢*> 4ae.

290. Equation of the nth degree. When the degree of
the equation is higher than a biquadratic the conditions of stability
become more numerous. A very simple rule will now be proved
by which these conditions can be calculated as quickly as they can
be written down. Besides this we propose to give an extension of
this rule by which we may determine how many roots there are,
real or imaginary, which have their real parts positive. If there
be no such roots the conditions of stability are supposed to be
satisfied. The number of roots with their real parts equal to zero
is also found.

291. To discover this rule we have recourse to a theorem of Cauchy. Let
z=xz+y /=1 be any root, and let us regard = and y as co-ordinates of a point
referred to rectangular axes, Substitute for z and let

f&=P+Q\J-T1. i
Let any point whose co-ordinates are such that P and @ both vanish be called a
radical point. Describe any contour, and let & point move round this contour in the
positive direction, and notice how often P/Q passes through the value zero and
changes its sign. Suppose it changes a times from + to — and g times from — to
+. Then Cauchy asserts that the number of radical points within the contour is
3 (a~B). - It is however necessary that no radical point should lie on the contour.

Tet us choose as our contour the infinite semicircle which bounds space on the
positive side of the axis of y. Let us first travel from y=-o to y=+» along

the circumference, If
F @)=z + P12 T e P, 1),

we have changing to polar co-ordinates
F(2)=pyr™ (cosnd+ginnd /= 1) +...
Hence P=py™cos nf +p,;r" 1eos (n-1) 0+...} @
Q= pyrsin nf+py™ sin (n—1) G4 T 5
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In the limit sinoe 7 is infinite P/Q=cot nf.

1= 3x 5nr

P/Q vanishes when 6= - 23’ Rt DI - SR veene(A).
. . 2 4x
P/[Q is infinite when 6 =0, i TR TRTI (B).

The values of 6§ in series (B), it will be noticed, separate those in series (A).

‘When 6 is small and very little greater than zero, P/Q is positive and therefore
changes sign from + to — at every one of the values of ¢ in series (A) If there~
fore n be even there will be n changes of sign.

If n be odd there will be n —1 changes of sign excluding 6=}, in this case
P|/Q is positive when @ is a little less than §» and negative when 4 is a little greater
than } =, but this result will not be wanted in the sequel.

Let us now travel along the axis of y, still in the positive direction round the
contour, vig. from y=+w to y=-c. BSubstituting z=z+y /=1 in (1) and
remembering that =0 along the axis of y, we have, when n is even,

P=pp—Pug¥+Pu-¥'—... +(~ 17 poy™ }

Q=Paa¥ - Pus¥®+...  —(-1P py*?
_P_ syt -pyt . 4
-2 ny"""Psy""+ ..................... eeree 4.

Let e be the excess of the number of changes of sign from — to 4 over that
from + to - in this expression as we travel from y=+® to y= -, then by
Cauchy’s theorem the whole number of radical points on the positive side of the
axis of y is § (n+e¢). This of course expresses the number of roots which have
their real parts positive,

292, To count these changes of sign we use Sturm’s theorem, Taking

LW =P - Py ... } ®
e B
we perform the process of finding the greatest common measure of f; (y) and f; (),
changing the sign of each remainder as it is obtained. Let the series of modified
remainders thus obtained be f; (¥), f((¥), &¢. Then, as in Sturm'’s theorem, we
may show that when any one of these functions vanishes the two on each side have
opposite signs. It also follows that no two successive functions can vanish unless
/1 (y) and f; (y) have a common factor., This exception will be considered presently,

Taking then the functions f; (y), f3(¥), &c., using them, as in Sturm’s theorem,
we see that no change of sign can be lost or gained except at one end of the series.
Now the last is a constant and cannot change sign, hence changes of sign can be
gained or lost only by the vanishing of the function f, (y) at the beginning of the
series.

Consider now the beginning of the series of functions f, (), f, (y), &e., and
using them in Sturm’s manner let y proceed from +w to —w. We gee that a
change of sign is lost when the first two change from unlike to like signs, i.e. when
the ratio of f; (y) to f; (y) changes from — to +. In the same way a change of
sign is gained when the ratio changes from + to —. Hence e is equal to the
number of variations or changes of sign lost in the series as we travel from y= + @
toy=-wo.

293, When y==+o we mbed only consider the coefficients of the highest
powers in the series of functions f, (¥), f3 (y), &c. Let these coefficients when y is .
'pOSlth be called - Poy P1> T3 94> &e.
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‘When y is negative the signs, since n is even, will be indicated by
Pos —P1» Qa0 —Gar &o.
Then we have just proved that ¢ is equal to the number of variations or changes of
sign lost as we proceed from the first series to the second.

294. If every term of the series p,, p,, g5, &c. have the same sign, it is evident
that n changes of sign will be gained and therefore e= —n; and e cannot = —n
unless all these terms have the same sign. In this case there will be no radical
point on the positive side of the axis of y. We therefore infer the following
theorem. The necessary and sufficient conditions that the real part of every root
of the equation f(z)=0 should be negative are that all the coefficients of the
highest powers in the series f, (y), f3(y), &c. should have the same sign.

295. Suppose next that these coefficients do not all have the same sign. The
degree of the equation being n, there are n + 1 functions in the series f, (y), f; (v), &e.,
and therefore on the whole there are n variations and permanencies. Let there be
k variations and n -k permanencies of sign. Now every permanency in the series
y=+o changes into a variation in the series y= —, and every variation into
a permanency. It follows that there will be n— k variations and k permanencies
in this second series. Hence the number ¢ of variations lost in proceeding from
the first to the second series is 2k —n. But the number of radical points on the
positive side of the axis of y has been proved to be =} (n+¢); substituting for ¢,
this becomes equal to k. We therefore infer the following theorem. If we form
the series of coefficients of the highest powers of the functions fi (y), fs (y), &e., every
variation of sign implies one radical point within the positive coniour, and there-
Jore one root with its real part positive.

206. We require some rule to construct the series of eoefficients with facility.
If we perform thé process of Greatest Common Measure on the functions f, (y),
f3(y) changing the signa of the remainders, we find that the first three functions are

S1(y)=py* - py™ + 04 - &o.,

L) =Py - P> + Py " - &e.y

H@®) _}'le;PoPs gt _1’11’4; PoPs g4+ &e.
1 1

Thus the cogficients of fs(y) may be obtained from those of f, (y) and f;(y) by a
simple cross-multiplication, and may therefore be written down by inspection. The
eoefficients of f, (y) may be derived from those of f; (y) and f; (y) by a similar cross-
multiplication and 8o on. These successive functions may be called the subsidiary
Sunctions.

297. First form of the Rule. Summing up the preceding arguments, we have
the following rule. The equation being
S (2)=pa" +p* 4 p™ 2+ ..
arrange the coefficients in two rows thus
- Do Py Py &o.
by P3y Py, &e.
Form a new row by cross-multiplication in the following manner

P1Pa2—DPoPs s P1Py—PoPs , &o.

¥4 P21 - -

Form a fourth row by operating on these two last rows by a similar cross-
multiplication. Proceeding thus the number of tdtms in each row will gradually
decrease, and we stop omdy when no term is left. Then in order that there may be

no roots whose real parts are positive it is mecessary and sufficient that the terms in
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the first column should be all of one sign. If they be not all of one sign, the number
of variations of sign is equal to the number of roots with their real parts positive.
The terms which constitate the first column may be called the test functions.
As in forming these rows we only want their signs, we may multiply or divide
any one by any positive quantity which may be convenient. We may thus often
avoid complicated fractions,

298. Equations of an odd degree. In order to simplify the argument we have
supposed the degree of the equation to be even. If n be odd, let as before

f@)=p* +p2* 1+ ... + Dy

‘We may regard this equation as the limit of

P+ + .+ P2+ D=0,

If & be positive and indefinitely small the additional root of this equation is real
and negative, and ultimately equal to — k. Those roots also of the two equations
which lie within the positive contour are ultimately the same,

Since n+1 is even we may apply to this equation the preceding rule. The two
first rows are Por P &Cy  Ppyr  Pahy

Py, P&, Py

‘We easily see by calculating a fow rows that none of the coefficients in the sub-
sequent rows confain & as a factor except the extreme coeflicients on the right-hand
side. Hence in the general case all the test functions, except the two last, remain
finite when & is put equal to zero; and therefore have the same sign as if the rows
hsd been calculated before the addition of the final term p.h. The last two co-
efficients in the first column, when only the principal power of A is retained, are p,
and p k. But since % is positive there can be no variation of sign in this sequence,
‘We may therefore omit this final term p,% altogether as giving nothing to the
number of variations of sign. The result is that the rule to calculate the number
of roots whose real parts are positive is the same whether the degree of the equation is
even or odd.

299. simplification of the rule when tests of stability only are required.
In a dynamical point of view it is generally more important to determine the condi-
tions of stability than to count how many times those conditions are broken. If
we only want to discover these conditions we may in forming the successive sub-
sidiary functions by the rule of cross-multiplication omit the divisor at every stage
provided p, be made positive to begin with, for this divisor being one_ of the test
functions must in every case be positive.

Supposing the conditions of stability to be satisfied we see by reference to Art.
292 that the proper number of variations cannot be lost at the beginning of the
series unless the roots of the equation f, (y) are all real and the roots of f, (y) separate
the roots of f, (y) and therefore are all real also. Then because when a subsidiary
function vanishes the two on each side have opposite signs it follows that the roots
of fs (y) are real and separate those of f, (y) and so on.

Supposing the roots of the equation f(z)=0 to have their real patts negative,
the real quadratic factors made up of those roots must have their terms positive,
Thus every term of the equation f(z)=0 must be positive. It follows from the
definition of the functions f; (y) and f, (y) in Art. 292 that the signs of their ferms
are alternately positive and negative, and since their roots are real every one of
those roots is positive. Hence all the subsequent auxiliary functions f;(y), f(¥),
&c. have their roots real and positive. The signs therefore of all their terms are
alternately positive and negative, and by Art. 297 the coefficient of the highest
power is in every case positive.
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In this way we are led to an extension of the theorem in Art. 297. Supposing
P, to have been made positive, we see by the preceding reasoning that though it ia
necessary and sufficient that all the terms in the first column should be positive,
yet it is also true that the terms in every column must be positive. Hence as we per-
Jorm the process indicated in that article we may stop as soon as we find any negative
term, and conclude at onee that f (z) has some roots with their real parts negative.

800, Ex. 1, Express the condition that the real roots and the real parts of
the imaginary roots of the cubic 22+ p,22+ P,z + p; =0 should be all negative.
By Art. 296 HE)=y* -,

J2 (W) =p1y? - P,
Using the method of cross-multiplication given in Art, 297 and onnttmg the

divisors as shown in Art. 299 we have
S1 ) =(p1Ps~25)y,
Ju)=(p,03~ 19 15
The necessary conditions are that p,, p,p,— p,, and py should be all positive.

‘We have retained the powers of y in order to separate the terms, and also the
negative signs in the second column, but both these are unnecessary and in accord-
ance with Art. 297 might have been omitted. In both this and the next example all
the numerical calculations are shown.

Ex. 2. Express the corresponding conditions for the biquadratic
2+ p P+t +pgr +9,=0,

L=yt -2 +Po
Sy)=py® -3y,
Ja () =(p1ps—P3) ¥* ~P1Ps

Jo@)=1{(p1ps~ps) 23— Pi"Ps} ¥

Js W) ={(P13— Ps) P~ P1Ps} P12
The conditions are that p,, P9y~ Ps, (P1Pa—Ds)Ps—p,2p, and p, should be all
pgaitive. These are evidently equivalent to the conditions given in Art. 287,

301. Second Form of the rule. When the degree of the equation is very
considerable there is some labour in the application of the rule given in Art. 297.
The objection is that we only want the terms in the first column and to obtain these
we have to write down all the other columns. We shall now investigate a method
of obtaining each term in the first column from the one above it without the necessity
of writing down any expression except the one required.

‘We notice that each function is obtained from the one above it by the same
process. Now the three first functions are written down in Art, 297. The first
and second lines will be changed into the second and third by writing for

Po Pu P g &o.
&e.

PoPy

the values P Pa— :P N "T

‘We therefore infer the followmg rule. To form the test functions of Art. 297 we
write down the first, viz. Py; the second may be obtained from the first and the third
from the second and 80 on by changing each letter as indicated in the schedule A just
above.

In these changes we always increase the suffix, hence we may write zero for any
Jetter as soon as its suffix becomes greater than the degree of the equation.

‘We thus form the test funections, each from the preceding, and we stop as soon
a8 we have obtained the proper number, viz. (counting p, as one test function) one
more than the degree of the equation.
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802. Example. Express the test functions for the quintic

S (@)=pe2®+p:17* +p52® + P2 + P2+ Py =0.
Here we notice that pg, py, &c. are all zero, so that any term which has the factor p;
will become zero in the next test function. Following the rule the six test functions

are R P09 Ph 1’2 - %l& ’
P _ 2, (P1Dy—PoPs) p—Pobs _ (P102 - PoPs)* Ps
Y Py 1Py (D1Ps—DoPy) — P2 (PP~ PoPs)’
and lastly, p,.

If we regard z as of one dimension in space it is clear that the dimensions of the
several coefficients p,, p;, &ec. are indicated by their suffizes. Hence we may test the
correctness of our arithmetical procesges by counting the dimensions of the several
terms in each of the test functions.

803. When any test function vanishes this process causes an infinite term to
appear in the next function. In such a case we may replace the vanishing function
by an infinitely small quantity « and then proceed as before. Thus suppose p, =0,
writing a for p, the six functions become p,, @, —p,Ps/a, Ps» P4~ PaPs/Ps+DoPe’[Ps*s
Ps.  Consider the first four of these functions; the signs of p, and p, being given, it
is easy to see by trial that there will be the same number of variations of sign
whether we regard a as positive or negative. Thus if p, and p, have the same sign,
the middle terms have always opposite signs and there will be just two variations;
if p, and p; have opposite signs, the middle terms are both positive or both negative
and there will be just one variation,

304. Vanishing of a Subsidiary function. In the preceding theory two
reservations have been made.

1. In applying Cauchy’s theorem it has been assumed that there were no
radieal points on the axis of y.

2. It has been assumed that P and Q have no common factor. In this case as
we continue the process of finding the gieatest common measure in order to con-
struct the subsidiary functions f;(y), &c. we arrive at a function which is this
greatest common measure and the next function is absolutely zero. Thus we are
warned of the presence of common factors by the absolute vanishing of one of the

_ subsidiary functions. ’

It is clear that if f(z) =0 have two roots which are equal and opposite, the even
and odd powers of z must separately vanish, It follows from the definition in Art.
292 that f; (y) and f,(y) will have these roots common to each. The greatest
common measure of f; (y) and f,(y) must therefore contain as factors all the
roots of f(z) which are equal and opposite. Conversely, the greatest common
measure of f; (y) and f, (y) is necessarily a function of y which contains only even
powers of y*, and if it be equated to zero, its roots are necessarily equal and
opposite. These roots must obviously satisfy f (z) =0,

Now if any radical point lie on the axis of y, f(z) must have roots of the form
2 ka/-1 and therefore equal and opposite. The two reserved cases therefore are
included in the one case in which f, (y) and f; (y) have common factors.

* If p,=0, we have an additional root, viz. z=0, which is not included in this
remark. But this root may be either divided out of the equation f(z) =0, or it may
be included in the following reasoning as a part of the fanction ¢ (2).
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805. Let the greatest common measure of f, (y) and f3(y) be ¢ (3*). If then we
put f(z)=y(-2?) ¢ (), the function ¢ (z) is such that no two of its roots are equal
and opposite, and to this function we may therefore apply Cauchy’s theorem without
fear of failure. By Art. 295, the number of roots of ¢ (z) which have their real
parts positive is equal to the number of variations of sign in the coefficients of the
highest powers of the subsidiary functions of ¢ (). But, since ¥ (- 2?) is real when
we write z=ya/ — 1, the subsidiary functions of ¢ (z) become, when each is multiplied
by ¥ (3*), the subsidiary fanctions of f(z). The presence of this common factor will
not affect the number of variations of signs in the series. Suppose then we agree to
omit the consideration of the factors of y (- z2), we mayiest the positions of the
remaining radical points by discussing either of the functions f (z) or ¢(z).

‘We may therefore make the following addition to the rule given in Art. 297.
If we apply that rule, using only the subsidiary functions whick do not wholly vanish,
we obtain the number of roots which have their real parts positive, but excluding
those roots which are in pairs equal and opposite to each other.

These omitted roots are of course given by equating to zero, the last subsidiary
function which does not wholly vanish. Patting y o/—1=2 we may deduce the
corresponding roots of the original equation.

It will be seen that for every pair of imaginary roots of y there will be one
value of z which has its real part positive, and for every pair of real roots of y there
will be two values of z of the form &ks/—1. The former indicate an unstable, the
latter a stable motion according to the rule of Art. 283.

306. Usually we may best find the nature of these roots by solving the equation
formed by equating to zero the last subsidiary function. But if this be troublesome
we may conveniently use Sturm’s theorem. Since the powers of y in any subsidiary
function decrease two at a time we may effect Sturm’s process of finding the
greatest common measure exactly as described in Art. 297. We may also show by
the same kind of reasoning as in Art. 295, that for every variation of sign when
Y=+ o in Sturm’s functions there will be a pair of imaginary values of y. We
may thus make a second addition to the rule given in Art. 297.

In forming the successive subsidiary functions as soon as we arrive at one which
wholly ishes, we write instead of it the differential coefficient of the last which does
not vanish and proceed to form the succeeding functions by the same rule as before,
Every variation of sign in the first column will then indicate one root with its real
part positive, The remaining roots will have their real parts negative or zero,

807. Bqual Roots. We know by Art. 283 that whether a single root of the
form a + b/ -1 indicate stability or instability, several equal roots will indicate the
same, except when a=0. In this latter case while solitary roots of the form +b4/—1
imply stability, several equal roots indicate instability. It is therefore gemerally
important to determine if the roots of the latter form are repeated or not.

When the equal roots are of the first form and there happen to be no others
equal and opposite to them, their number is fully counted in using Cauchy’s theorem,
‘When the equal roots are of the second form, i.e. +b+/—1, they appear in the com-
mon factor (~—#2?). If we can solve the equation y (~2?)=0, we know at once
whether the repeated roots are of the first or second forms. If we analyse the

_equation by Sturm’s theorem (Art. 306) and stop as usual at the first Sturmian
function which does not vanish, we must remember that these equal roots will be
counted as if they were one root. The last Sturmian function which does no
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vanish gives by its factors the sets of equal roots with a loss-of one root in each set.
If we differentiate this function and continue the process described in Art. 297, we
are really applying Sturm’s theorem anew to this function, and will arrive at another
Sturmian function containing the sets of equal roots with a loss of two of each set.
Thus by continuing the process the number of repetitions may be counted.

Numerical Bxamples, Determine how many roots of the equation
7042928 -227 428 +8325+24-228-224+241=0

have their real parts positive.
Forming the first two rows by the rule of Art. 297 we have
ym 1’ - la 1’ 1) - 1) 11
y? 1, -2, 8, -2, 1,

where we have written on the left-hand side the highest power of each subsidiary
function, and have omitted the negative signs given in the second, fourth and sixth
columns of Art. 292. We may notice that the presence of negative terms shows that
the equation indicates an unstable motion (Art. 299). Hence if we merely wish to
determine the question of stability or instability the process terminates at the first
negative sign.
Operating by the rule of Art. 297 we have
y° 1, -2 38, -2 1.

These are the same as the figures in the last line, hence the mnext subsidiary
function will wholly vanish. Therefore y (—2%) =28%-225+324—2:2+1. By Art. 306
we replace the next function by the differential coefficient

7 % 8, ~12, 12, -4, divide by 4,
y 2, -3, 3, -1,
'3 _'}a 1 -4 1, m‘ﬂﬁP}y by 2,
y -1, 8 -3, 2,
3, -3 38, divide by 3,
y‘ 3 £ t y £
z 1; —1’ 1;
" { 2, -2, 2, divide by 2,
1, -1, 1,

Here again the next function vanishes. There are therefore equal roots given
by 2¢—22+1=0. The nature of these roots may be found by solving this equation,
Disregarding this, we may (Art. 307) replace the next function by the differential
coefficient

» z 4, -2, divide by 2,
2, -1,
y2? -1 2, after multiplication by 2,
y 3,
y° 2,

Looking at the first column, we see that there are four changes of sign. Hence
there are four roots whose real parts are positive. We verify this by remarking
that the given equation may be written in the form (z4 - 22+1)2 (s2+ 2+ 1) =0.

In this example we have exhibited all the numerical calculations.

Ex. 2, Show that the roots of the equations

' #A+2:8+2341=0,
284277 + 428+ 42546244623+ 723+ 42+ 2=0,
do not satisfy the conditions of stability. ‘
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Ex. 8how that the roots of the equations
2848284 527+ 424+ 2=0,
284254 6244+ 5% +1122 462+ 6=0,
do satisfy the conditions of stability.

The conditions of stability given in this section are taken from the third chapter
of the author’'s essay on Stability of Motion. Other methods of testing the roots of
the equation f () =0 are given in the second chapter of that essay. Tbe conditions
for a biquadratic were read before the Mathematical Bociety in 1874.




CHAPTER VIL

FREE AND FORCED OSCILLATIONS.

_ Free Oscillations.

808. Txm difference between free and forced wbmtlons will be explamed in the
next section of this chapter. The following rough distinetion will be sufficient for
our present purpose, When the forces which act on a system depend only on the
deviations of the several particles from their undisturbed motion, every term in
the equations of motion, as explained in Art. 257, will contain the first powers of
the co-ordinates. The equations of motion will then take the form given to them in
Art. 810 of this chapter. The oscillations of such a system are called its free oscil-
lations.

Besides these forces we may have others due to external causes which may be
functions of the time, and may not vanish when the system is placed in its undis-
turbed position. Such forces are usually written on the right hand side of the
equations of motion, to intimate that their effects must be calculated by different
rules from the former forces. The oscillations produced by these forces are called
Jforced oscillations.

809. Introductory summary. The propositions in this section are con-
structed for the purpose of examining the small oscillations of a system which
depends on many co-ordinates. But as they are of general application they are
here presented in a form which is purely mathematical. No reference is made to
any dynamical principle and when dynamical terms are used it is only for the sake
of explanation.

‘We begin by taking the equations of the second order with n dependent variables
in their most general forms, though such general forms do not occur in dynamies,
Two typical equations are then deduced, and from these, the chief propositions in the
section are derived.

The first step usually taken in golving sxmultaneous equations is to form a cer-
tain determinant (Art. 262). The general form of the solution and the stability of
the resulting motion depénd on the roots of this determinant. If as explained in
Art. 283 the real parts of the roots are positive the motion is unstable. Two
propositions are shown to follow immediately from the typical equations. If three
funetions here called 4, B, C be one-signed it is shown (1) however general the
equations may be the real roots of the determinant eannot be positive, (2) if the
equations be of that simpler character which occurs in dynamics the real part of
every imaginary root is negative.

R. D. 1L 12
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When we apply our equations to the case of a system oscillating about a posi-
tion of equilibrium we see that the function A corresponds to half the vis viva, B to
the dissipation function, and C to the potential of the forces of restitution.

The first of these propositions has been established by Lagrange and Sir W.
Thomson when the equations represent the oscillations of a system about a position
of equilibrium. The second is to be found in the author’s essay on the Stability of
Motion but expressed in a different form. It is also given in the last edition of
Thomson and Tait’s Natural Philosophy. The reader is also referred to a paper by
the author read in April 1883 before the Mathematical Society of London.

310. 'The roots of the fundamental determinant. Let
there be any number of dependent variables «, vy, z, &c., to be
found in terms of ¢, by means of as many differential equations of
the second order wit{l constant coefficients. Whatever these
equations may be, they may be very conveniently written in
the form

(Aua’+Bn6+C'u)z+( A1,6'+Bu3+01,)y+ An8’+Bu6+G,,)z+&c.=0,

4Dy P+ Eyy3+Fy + Dy B+ Eyg+ Fyy
4,34 B3+ C’,,)z+(A,,&'+B,,8+C,,) y+[ Ax®+ B,36+C',,) 2+&0.=0,
— Dy —Eyy3~ Fy + D8+ Eyg 34 Fy

=Dy P ~-Ey8-Fy —Dyy8~ Egyd— Fyy
&o, &o. + &0.=0,

where the symbol & represents differentiation with regard to ¢, and
the order of suffixes is immaterial, so that 4, =4, and so on.

We see here two sets of terms, (1) those which depend on the
letters 4, B, C, and which by themselves constitute a symmetrical
determinant ; (2) those which depend on the letters D, E, F, and
which by themselves constitute a skew determinant.

Au&'+B,,6+0,,)z+ Ay 8+ B3+ Cop\ Y+ (4338 + By 8+ Cg) 2+ & =0,
+

811, For the reasons given in Chap. IX. of Vol. L, we may
call the terms which depend on the letter A the effective for
those which depend on the letter B the forces of resvstance, those

on C the forces of restitution. It will generally happen that
the terms which depend on the letters D and ¥ are absent. The
terms which depend on the letter & will occur when we consider
the oscillations about a state of motion, Chap. m1., Art. 112, These

we shall eall the centri;ugal forges.
If we write A, B, C for the three functions
A=3A4 o+ A 2y+34, .9 +...... ,
B=}B 2+ B, xy+3By +...... )
C=34C, 2"+ Cuay+3Coy/ +...... R
the terms in the several equations which arise from 4, B, C may

be written
dA dB dC dA (dB dC

2 T il bt : - ot
Yot Yty tay
Hence A4, B, C may be called respectively the potentials of the

&e.
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effective forces, the forces of resistance, and the forces of resti-
tution. ,

312. When we compare the equations of motion with those
given by Lagrange for the oscillations about a position of equi-
librium (Chap. 11.), we see that the function A cannot be otherwise
than positive. So also these oscillations are stable if the function
C be always positive.
Thus, 1t will frequently occur that the three functions 4, B, C,
or some of them, are such that they keep one sign whatever real
quantities we write for , y, 2, &c., and do not become zero except
when =, y, &c. are all zero. Such functions will be referred to as
one-signed quadrics.
313. The method of solving the differential equations in
Art. 310 has been explained in Chap. vi. Let m, m, &c., be
the roots of the fundamental determinant, which we need not here
write down. This determinant is the same as that represented
by the symbol A (8) in Art. 262. Let us suppose that these roots
are unequal, the case of equal roots being regarded as a limiting
case of unequal roots. The solution may be written thus :—
s=™ +z,e™+ ... dz/dt = z;e™ + ™" + ...
Y=y +ye*+..}, dy/dt=y,e™+ye™+...},
z=&e. &e. = &e.

where z;=a,m,, y;=y,m, &c., z,=z,m,, &c.

Here «,, y,, 2,, &c. contain as a common factor one constant
of integration, ,, ¥,, &c. another constant, and so on. The forms
of these constants are not wanted here. It is enough that we
should remember that the coefficients which belong to a real ex-
ponential are themselves real. On the other hand, if m,, m, be a

pair of imaginary roots, the coefficients (z,, «,), &c., take the form
Pi Q-1

314. 'The first equation. If we substitute the first terms
of each of these values of z, ¥, 2, &c., in the equations of Art. 310,
we obtain a set of equations which differs from those only in
having m, written for ¢, and #,, y,, &c. for z, y, &c. Multiply
these respectively by «,, y,, &c., and add the results together; we
have

(Auwx’ + 2Anw1y 1 + &c') m: + (B u‘”l’ + 2B 120%h + &c') m,
: + (0,2 + 20,2y, + &c.)=0.

11 1
It should be noticed that the terms which depend on the letters
D, E, F have altogether disappeared from this equation.
It should also be noticed that the coefficients of the powers of
m argz twice the functions 4, B, C with =, y,, &c. written for
z, y, &e.

122
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. 815, Prop, L—On real roots.—We may immediately de-
duce the three following theorems :— ' .

1) ”dIf the l)otentiale A, B, C be either zero or one-signed func-
tions, and if all three have the same sign, the fundamental deter-
minant cannot have a real positive root.

For if m, were real, the coefficients z,, y,, &c. would be real.
We should thus have the sum of three positive quantities equal
to zero.

(2) If there be no forces of resistance, i.e. if the term B be
absent, and if the potentials A and C be one-signed and have the
same 8ign, the fundamental determinant cannot have a real root,
posttive or negative. , ,

(8) - If A, B, C be one-signed functions, but if the sign of B de
opposite to that of A and C, the fundamental inant cannot
have a negative root. ‘

These propositions, are true, whether there be any terms in the
differential equations which depend on the functions D, E, F or not.

‘We may also notice that unless the potential C can vanish for
some real values of the coordinates other than zero, the fundamental
determinant cannot have a root equal to zero. If, for example, the
coordinate « is absent from C (Art. 98), then C vanishes when the
other coordinates are zero and z is finite.. In this case m, can be
equal to zero. If the forces depending on B are absent also the
determinant will have two roots equal to zero.

‘When two zero roots occur terms such as nt+« must be added to some of the
expressions for the co-ordinates given in Art. 318. Unless the initial conditions
are such as to make the constants » and a equal to zero, these terms should be
included in the expressions 8=f(t), ¢=F (t), &ec., which as explained in Art. 257,
give the steady motion. The presence of these terms thus indicate a slight change
in the steady motion about which the system has been supposed to oscillate.

316. 'The two equations. Exactly as in Art. 314, let us
again substitute the first term of each of the values of «, z, &c. In
the equations of motion, But let us now multiply these by
,, ¥,, &c., and add the results. We thus obtain

[4,28+ Ay (29, + 2,9) + 4y (12, + y22) + &e ] m
+ [Byzw, + &e.]m, + [C, zz, + &c.]
= Dm (%yn - w’yl) + 'Dzs (ylzﬂ-— yazl) + &C] ml’
+ [En (wlys - %y) + &c] m,+ [F 3 (_$xy2 - a"ayx) + &c°]'

To bring ‘this equation within bounds, we must use some
notation to shorten the coefficients. Let us represent the halves
of these series by their first terms, omitting suffixes to 4, B, &c,
We may therefore write the equation in the form

A (zz) m?+ Bxzmx)m +C (zz,)
= D (wl y?) 1"’12 + 'E' (wl yi) ml + F(wl yl)'
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In the same way we have :
A (a,5) m}+ B(wg) m,+ C (5,2)
=—D(zy,) m, ~E (z,y,) m,~ F (z,3,)

Also we deduce from these the two equations

4 (2,z) m!+ B (z,2) m, +C(2,2,) = 0}

4 (a:,a;,) m’: +B (a:,w,) m, + c (a"aws) =0)"
The first of these is the same as that already found in Art. 314.

Here we may notice that the functions 4 (zz), B(az), C (=)

are really the same as those we have already more simply deno

by 4, B, C. We also notice that D (z,y9,) =0, E (z,9,) =0, and
F (x,y,) =0.

317. Let us now suppose that there is a- pair of imaginary
roots in the fundamental determinant of the form m, =r+p /-1,
‘myg=r—py—1. The values of z, y, &c, given m Art. 313,
become
@ = (2, + z,) €" cos pt + (x, — x,) = 1¢" sin pt + &,
y=(y,+y,)e" cospt + (y, — y,) V— 1¢" sin pt + &c.,
which may be conveniently abbreviated into
z =X ¢"cospt+X,e"sinpt + z, ™ +...
y=Y,e"cospt + Y, e sin pt + y,e™ + } .
z =&e.
If X/'=rX +pX, and X/=—pX +7X,, &,
dz/dt =X e cos pt + X, " sin pt + x,/ €™ + ...}
dy/dt =Y ¢" cos pt + Y, €" sin pt -+ y, €™ + } .
&e. = &e, '

318. Returning now to the two first equations of Art. 316,
let us divide them by m, and m, respectively. If we first add and
then subtract the results, we have

4 (“1"{2)""'13 ("’1”2)"' c(“l“s)#a = %D (xxyx)P“F(zlys)'.‘%:% '\/'_1'

1
A (2,2)p-C (2120 5 fp, = zD (z199) r+ B (2,95) +F (z19) ,.T_:“;:; Nl

By substitution, we find that
44 (z,2)) = ﬂXrXx) +4 (szs)} ,
~2D (=) J-1=D(X,Y)
with similar results for the other letters. We also infer from these
equations that if A be & one-signed function, 4, (z, ,) i3 not only

real, but has always the same sign as A. Similar remarks apply
to the functions B and C.
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If the functions D, E, F be absent, the two first equations of
this Article reduce to

A (z,2,) 2r + B (z,2,)=0 }
~ 4 (5,2) (*+p) + Cla,2) =0f’

except when p=0, i.e, except when the roots (which we have
supposed imaginary) are real.
hesge equations may be conveniently written
BXX)+BXX) . . CXX)+0(XX)
A(X,X)+AX,X)’ AXX)+A(X,X)’
thus giving r and p when the amplitudes of the oscillations are
known.

319. Pror. II. On imaginary roots.—We may immediately
deduce the following theorem from the equations of Art. 318.

(1) Let the fundamental determinant be symmetrical, i.e., let
the functions D, E, F be all absent. Let the potentials A and B
be one-signed and have the same sign (whether C be a one-signed
Junction or not). Then the real part r of every vmaginary root
must be negative and not zero. But if the potential B be absent,
then the real part of every vmaginary root 18 zero.

If the potentials A and C be one-signed and have opposite signs,
there can be no tmaginary roots. '

These results follow by simply looking at the two last equations
of Art. 318.

(2) If the terms depending on D and ¥ be absent from the
equations, whether the terms depending on E be present or not, and
if the three potential functions A, B, C be all one-signed and have
the same sign, then the real part r of every tmaginary root is negative,
and not zero. But if the forces of resistance,.e. B, be also absent,
then the real part of every ymaginary root is zero.

. (8) If the terms depending on D and E be absent, but not
necessarily those depending on F, and if 4, B, C be all one-signed
and have the same sign, then the real part r of every imaginary
root must be negative, or, if positive, must be less than p.

r=-—1%

820. Ex. 1, If 4 be a one-signed function prove that {4(z,z,)}? is always less
than the product 4 (z,2,), 4 (z,).

Ex. 2. If A(m) be the determinant of motion, A, (m) the minor of its leading
constituent, x,7,, &oc. the minors of the first row, and m any quantity not neces-
sarily a root of A (m), prove the identity

A (212)) m?+ B (2,2) m+ C (2,2,) = A (m) 4, (m).
Ex. 8. If my, m, be any two. quantities not necessarily roots of the determinant
A (m), prove that
A (2,35) m*+ B (2, 29) m + 0(“1"':)}
=A(m)A .
=D (2y) m?~ B (eyy) my - F ()] =1 (™) 4 ()
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Ex. 4. If the determinant be symmetrical, and if the potentials 4 and C be
one-signed and have opposite signs, then whatever sign the potential B may have,
the roots of the determinant are all real.

Ezx. 5. If the terms depending on F and E be absent, but not necessarily those
depending on D, and if the three potentials 4, B, C be all one-signed and have the
same sign, then the real part r of any imaginary root must be negative or if posi-
tive less than p.

821, Effect of the forces of resistance on oscillations about a position of
equilibrium. Let a system be oscillating about its position of equilibrium under
no forces of resistance, so that the functions B, D, E, F are all zero. We also
suppose the functions 4 and C to be one-signed and to have the same sign.

By referring to the equations of motion in Art. 810 we see at once that the
determinant of the motion A (3) will contain only even powers of 3. This deter-
minant is of course the same as the Lagrangian determinant discussed in Chap. 11,
It follows either from Chap. 11, or from Arts. 315 and 319 of this chapter that all
the roots of the equation A (3)=0 are of the form + pa/-1. Any oco-ordinate will
therefore be represented by a series of the form

z=X,co8pt+X,sinpt+......

Let now some small forces of resistance act on the system. We therefore intro-
duce into the equations of motion the terms which depend on the function B, The
forces thus introduced are supposed to be 80 small that we may reject the squares
of the coefficients of the function B. We represent this by supposing every co-
efficient to contain a factor x whose square can be neglected. It is the effect of
these additional forces on the former motion which we wish to discover.

Referring again to the equations of motion in Art. 310, let A, (3), A, (5) be the
determinants of motion before and after the introduction of these forces of resis-
tance, The determinantal equation therefore becomes

Ay (8)=4,(8) + By 81, (3) + &e. =0,
where the symbol 7 indicates the minors of the constituents of A, (5) as explained in
Chap. vi,

This equation may be written in the form A, (3)+x3¢ (3) =0, where ¢ (3) con-
tains only even powers of 3. 8ince pa/-1 is a root of A, (3)=0, we let the corre-
sponding root of this new equation be pa/—1+r where r is & small quantity, real
or imaginary, whose square can be neglected. We find by Taylor’s theorem

Ay (pN/ —1) r+xpr/ ~1¢ (p1/-1)=0.
Hence since A;'(3) contains only odd powers of 3, it follows that = is necessarily
real.

‘We have thus proved that the correction to any root of the determinantal equa-
tion when we introduce the resistances is necessarily real. This means that the
correction to the imaginary part of the root depends on the square of the resistances.
The addition s to the real part of the root introduces a real exponential factor e® into
the amplitude of any oscillation. The addition to the imaginary part alters the
period of the oscillation (Art. 817). Thus the periods of the oscillations are affected
only by the squares of small quantities when we introduce the resisting forces,

" 822, The series for any co-ordinate will now take the form (Art. 817)
=X e"cospt+ X etsin pt+ ...
where p is the game as before and by Art. 819 s is negative. With the same given
initial values of z, y, &c. dz/dt, dy/dt, &o. the coefficients X, &c. will be changed
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only by terms which contain the factor x, and being themselves small, these changes
may be neglected.

The value of r may be deduced from the expressions given at the end of Art.
818, If the forces of resistance were zero, the real exponentials would be absent
and the ratios X,/X,, Y,/Y, would all be equal. With small forces of resistance
these ratios differ from each other by quantities which contain the small factor «.
It follows that the ratios B(X,X,)/4 (X,X,) and B(X,X,)/4 (X,X,) are also equal
when we reject the square of the small quantity. The expression for r therefore
reduces to the simple form :

r=_iB(X,Xl)____§B11X1’+2BQX,Y1+...
4 (X, X)) AnX3+24 XY, +...°
Translating this formula into English we see by Art. 73 that the numerical value
of 7, for any one principal oscillation, is one half the ratio of the mean value of the
dissipation function to the mean value of the kinetic energy for that oscillation.

Forced Oscillations.

323. We may suppose a system to be moving in a given state
of motion defined, as explained in Art. 257, by the co-ordinates
0=0,,p=¢,, &c. where 6,, ¢,, &c. are known functions of the time.
This motion we shall call sometimes the undisturbed motion and
sometimes the steady motion. If the system be now disturbed in
any manner, we write 6 =6, +z, ¢ = ¢, + ¥, &c. where , , &c. are
so small that we may reject their squares. This disturbance may
have been made by some small impulse and the system may then
have been left to oscillate about the undisturbed motion.

We may also have continuous forces acting on the system
tending to make it oscillate about the undisturbed motion. As
the object of our enquiry is the oscillation of a system, we shall
‘suppose that these forces when they exist are periodic. If f(2)
represents any one we may suppose this function to be expanded
by the known processes of Trigonometry in a series of multiple
angles ; thus

S ()= Pe"tsin (At + a) + Pe~*tsin (\'t + @) + &e.

Each of these terms is called a disturbing force. The coefficient of
the trigonometrical factor of any term is called the magnitude or
amplitude of that term. The angle Af + a is called sometimes the
phase and sometimes the argument.

It frequently happens that the real exponentials are absent
from the expression for the force. This case will therefore be more
particularly considered in what follows. When we wish to call
attention to the absence of the real exponential, the disturbing
force is often called a permanent force. When the real exponential
is present with a negative index, we may call the force evanescent.

324. The general equations of motion of the second order are
given in Art. 310, but in Dynamics the terms which depend on
the functions D and F are in general absent. The mode in which
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these are formed when the resisting forces are absent is explained
in Art. 111. Including these resistances we may suppose that the
equations of motion take the form

(4,8 +B8+C,)z+ (Aus’+ B3+ C’“) Y+ ... =Pe*gin (\t + a)
+E,8
(A‘,B' +B. 3+ 0,,) z+ (Ax8'+ B8+ Cp) y + ... = Qe~<*sin (ut + B)

12
: : &e. = &e.
where we have written on the right-hand side only one disturbing
force in each equation as a specimen.

For the sake of brevity, it will be found convenient to distinguish the equation
in which any disturbing force occurs by some simple phrase. The first equation
is obtained from Lagrange’s equations by differentiating with regard to # or z,
The second by differentiating with regard to ¢ or y. The force on the right-hand
side of the first equation may therefore be said to act directly on the co-ordinate 2
and indirectly on y, z, &e. So the force on the right-hand side of the second equa-
tion acts directly on the co-ordinate y and indirectly on 2, z, &ec.

325. Forced and Free Oscillations. It is proved in the
theory of Differential Equations that the solution of these equa-
tions leads to an expression for each of the co-ordinates which
contains two sets of terms. The first set is called a particular
integral and consists of any solution obtained by any process
however restricted. The second set is called the complementary
Junction and represents the value of the co-ordinate when all the
disturbing forces on the right-hand side are omitted. The comple-
mentary function is therefore the same as the solution found and
discussed in the first section of this chapter.

The complementary functions in the expressions for the co-
ordinates give the oscillations of the system about the undisturbed
motion when not influenced by any disturbing forces. These
integrals are therefore said to constitute the natural or free vibra-
tions of the system. The particular integrals in the several co-
ordinates which indicate the effects of any disturbing force are
called the forced vibrations or oscillations due to that force. '

According to this definition any particular integral may be
taken to. represent the forced vibration. But in practice there is
one particular integral -which is more convenient than any other.
‘What this is will be made clear by the next proposition.

A free oscillation does not necessarily mean a principal oscilla-
tion though it is sometimes used in that sense (Arts. 53 and 116).
Any motion represented by any number of terms selected from
the complementary function will be -a free motion. The word
“free” is meant to be a contrast to the word “forced.”

The term ‘ Complementary Function” is used in Gregory’s Ezamples, 1841,

The distinction of Waves into ‘free ” and ¢ forced”’ may be found in Airy’s Tides
and Waves, published in the Encyclopsdia Metropolitana, 1842.
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326. To find the Forced Vibration. To find a particular
integral for any force Pe~*sin (A\f+a) we follow the methods
already explained in Chap. vi. If A (8) be the determinant of
the motion and 1, (3), Z,(8), &. be the minors of the first,
second, &c. terms in that row of A(8) which corresponds to the
equation in which the force occurs, we have

&= L@®) Pe-*tsin(At+a), ¥ =§ g; Petgin (At +a), z=&c.

A (9)

We shall now prove that these operators will lead to two

trigonometrical terms in each of the co-ordinates. These two
terms constitute the forced vibration in that co-ordinate.

827. To perform the operations indicated by these functions of &, we use the
following simple rule. To perform the operation F (6)=l—§—%l) on Pe—_‘“:lo‘;w+ a) we
write 3= —x+M/—1 and reduce the operator to the form L +MA\/-1, The

required result is then Pe—* (L + M3) :::: (A+a).

To prove this rule, we notice that by Art. 265 F (8) e™=(L + M/ —1) e~ where
m=~x+A/—1. If we now replace the imaginary part of the exponential by its
trigonometrical value, and equate the real and imaginary parts on each side of the
equation, the result follows at once.

828. Ex. If thedeterminantA () have a roots each equal to m, i.e. — x+A /=1,
the result assumes an infinite form, Prove that in this case the operator may be
replaced by {21(3) + at®1I'(3) + ... + I*(8) }JA%(3),
where the coefficients follow the binomial law, and A* (3), &o. have been written
to express the ath differential coefficient of A (3), &e, Every one of these operations
may now be.performed by the rule given in the last article.

To prove this, we replace the root m by m+h where h is to be afterwards put
equal to zero, We then find

I@) o a K e, h®

The first a terms of this series though infinite may be absorbed into the
complementary function. The solution is therefore expressed by the (a + 1)th term,
829. Ex., A particle deseribes a nearly cirocular orbit about a centre of force
whose attraction varies inversely as the square of the distance. It is also acted on
by two disturbing forces represented by Psin A\t and Q sin\t acting respectively
along and perpendicular to the radius vector. If the polar co-ordinates r, 6 be given

by r=a+2, 6=nt +y, prove that the equations of motion are

(89 - 8n2) z — Sandy="P sinhtg
2ndz+adly =QsinAt)’
show that the forced vibrations are given by

P . 2nQ ~_onP (Bn 429 Q .
= o tM o TR oM Y= O M e ) S M
330. Smooth and Tremulous Motion. We have supposed
the system to be capable of moving in some state of steady
motion, just as a hoop rolls on the ground in a vertical Plane.
But owing to some small disturbances the system really oscillates
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on each side of this steady motion, the amount of disturbance
being always represented for each co-ordinate by the sum of
the natural and forced oscillations. When the period of one
of these is small the system rapidly changes from one side to
the other of its mean or steady motion. This mean motion will
then appear to the eye to be tremulous. When the periods of all
the oscillations are very long the changes from one side of the
mean motion to the other takes place so slowly that it is hardly
perceived to be an oscillation. The mean motion is thus said
to be smooth.

331. Disappearance of the Free Vibrations. When a
system is set in vibration by any continuous permanent disturbing
force, we have seen that two kinds of vibration are excited in
the system, viz. the free and the forced vibrations. If there be
no forces of resistance both these will continue to coexist through-
out the motion. But the forces of resistance introduce an ex-
ponential into the free vibration which causes the amplitude
of the vibration to decrease continually (Art. 319). Finally the
free vibration becomes insensible. But the amplitude of the
forced vibration does not decrease. Thus the oscillation of the
system is ultimately independent of the initial conditions and
depends only on the forced vibrations. The forced vibration

roduced by a permanent disturbing force is therefore sometimes
called the permanent vibration.

332, Itis sometimes important to compare the rates at which
the different free oscillations tend to become extinct under the
influence of the resisting forces. It is clear that this depends
on the magnitude of the negative quantity » in the exponential
factor e introduced by these resistances. Since this factor is not
necessarily the same in all the terms, it follows that all the free
vibrations do not diminish at the same rate. Some may become
insensible before the magnitudes of others have been much
impaired,

When the initial amplitudes of any one principal oscillatiorn are known in all
the co-ordinates, the value of r for that oscillation can be deduced from the equations
given in Art. 818, But when the gystem is oscillating about & position of equilibrium
and the forces of resistance are small the expression for r takes the very simple
form given in Art. 322, If X, ¥;, &c. be the amplitudes in the co-ordinates z, y,
&e, of any one free principal oscillation, this expression is
BuX2+2B XY, +...

, A X 2424, XY +...°
where the vis viva and twice the dissipation function are given by
QA=A 2+ 24,2y + ..., 2B=B,a*+2B 2y +....
- The use of this expression for r will be best shown by a few examples.

833. Ex.1. Let usregard a homogeneous tight chain as constructed of a series
of equal very small particles, each of mass m, connected by very short strings each
of length ! and without mass. Let z, y, &c. be the displacements of tlie partieles of

r=-3
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such a string vibrating, say, transversely. Then the vis viva is given by Zmz™.
Suppose the resistance of the atmosphere to be represented by a retarding force on
each particle which varies as its actual velocity. Prove that the dissipation func-
tion B may be represented by 2B=Z«mz'2, Taking x to be the same for all the
particles it immediately follows that r= —3x. This is the same for all the free
vibrations.

Ex. 2. If the particles of the chain vibrate longitudinally instead of transversely
the effects of the resistance of the air will be less than before while the effects of
viscosity or imperfect elasticity will be more apparent. Let us suppose that these
may be represented by a series of forces resisting compression or extension between
adjacent particles, each force being proportional to the relative velocities of the two
particles between which it acts and reacts. Prove that the dissipation function B
may be represented by 2B =Zxm (& - y/)*.

Speaking in general terms, we infer that r is greatest for that kind of oscillation
in which the differences of the amplitudes of the oseillations of adjacent particles
are greatest. Oscillations of this kind will disappear the soonest, while those in
which adjacent particles move nearly together may remain perceptible for a long
time after. This is sometimes briefly expressed by saying that the effect of viscosity
s to extinguish the shorter waves before the longer ones.

Ex. 8. If the co-ordinates be so chosen that the dissipation function and the vis
viva take the forms 2B=B,;z? + B,y + ... 2T =Apa"+ Ay + ...
then the value of 7 for every principal vibration lies between the greatest and least
of the fractions B,,/24,,, By[24,,, &c. It will be noticed that these limits are inde-
pendent of the force function and are therefore the same whatever the forces may be.

- Ex. 4 The membrane which forms a drum-head vibrates transversely when
struck. If the resistance of the air be slight and vary as the actual velocity of each
particle, show that all the free vibrations have the same real exponential factor.

Ex, 5. 'When successive notes are sounded on s musical instrument the terminal
motion of one note is the initial motion of the next. Explain why each note is not
sensibly affected by the preceding one.

334. Herschel’s Theorem on the period of the Forced
Vibration. On comparing the terms in Art. 327 which con-
stitute the forced vibration with that which forms the disturbing
force, we notice that the period of the forced vibration is the same
as that of the force to which it is due. Thus ¢f any periodical
cause of disturbance act on a system of vibrating particles the
Jorced wbrations follow the period of the exciting cause. This
important theorem is due.to Sir J. Herschel, who first enunciated
it m his Theory of Sound (Encyc. Met. 323). His demonstration
however is totally different from that given here.

More ienerally, the disturbing force and the resulting forced
vibration have not only the same period, but have the same real
exponential .also. Thus, when the fundamental determinant has
no equal roots the two have the same general form or type. A
permanent force produces a permanent vibration, an evanescent
vibration follows only from an evanescent force. '

In the proof of this theorem we have assumed that the system
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of vibrating particles is such that the squares of the dlsplacements
can be neglected.

The theorem also only applies to the forced vibrations. If
therefore we wish to apply Herschel's theorem to the actual
visible motion, a time sufficient to allow the free vibrations to
die away, must have elapsed since the initial motion. See Art. 831.

835. As an example of this principle we may notice that when a sounding body
(such as a drum) excites vibrations in the air, the period or pitch of the sound
produced in the air and in the ear is the same as that of the sounding body.

836. As another example we may take one given by Herschel. Let a ray of
light fall on a refracting substance like glass. The vibrations of the incident light
must excite vibrations inside the glass., These last as long as the exciting cause
continues and therefore constitute the forced vibration. The period of the re-
fracted light is, by Herschel’s theorem, the same as that of the incident light.

There are however some exceptions to this result. Thus in the Phil. Trans. for
1852 Prof, Btokes has pointed out that light beyond the ultra violet by passing
through certain substances may have its period so lengthened as to become visible®,
And Prof. Tyndall by means of the ultra red rays heated a platinum foil to
incandescence and thus so shortened the periods that the vibrations became visible,
See his Rede Lecture, 1865.

337. How a Disturbing Force is Magnified. Let a system
be acted on by two permanent disturbing forces which we may
represent by the two terms P sin (¢ + a) “and Q sin (ut + 8) both

placed in the first equation of Art. 324. The corresponding
forced vibrations in the co-ordinate .1: are given by

A((S)) Psin (v + o) + ZCL A (8) LO) o gin (ut + B),

where I(8) is the minor of the z term in the first line of the
determinant A (3). These coefficients contain the operator & and
their magnitudes will therefore depend on A and . e therefore
infer that the effects of different permanent disturbing forces acting
under similar conditions on the same_co-ordinate are mot simply
proportional to their respective magnitudes but depend on their

periods.

* To understand the cause of these exceptions we must remember that the
forces of restitution have been taken proportional to the first power of the displace-
ments, i.e. only the first powers of z, y, &c. have been retained. Now the molecules
of a body may be compounded of smaller atoms closely packed together. When the
oscillations under consideration are such that only the molecules move amongst
each other these displacements may be so small compared with the distances of the
molecules from each other that the force of restitution f(£), due to a displacement ¢
of any molecule, may be replaced by the first power which oceurs in M°Laurin’s ex-
pansion. But when the oscillations are such that the closely packed atoms of each
molecule move amongst each other, the force of restitution may no longer vary as
the first power of the displacement. Thus the equations of Art. 324 may apply to the
former but not to the latter kind of motion. - The reader is referred to Prof. Stokes’

paper.
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838. Without however restricting ourselves to permanent
disturbing forces, let us consider the forced vibration produced by
the disturbing force Pe~*sin Af. Writing as before (Art. 327)
m=—«x+ A4y —1, the resulting forced vibration is the co-

efficient of /—1in 1(3) I (m)

If m be nearly equal to a root of A(3) the denominator of this
expression is very small. But the types of the free vibrations
are given by A(m) =0 as shown in Art. 262. We therefore infer
that a disturbing force whose pertod and real exponential are
nearly the same as those of any one free vibration wall produce a
large forced vibration.

339. Usually the disturbing forces are of the permanent
type Psin (A +a). If there be any free permanent oscillation
of the form A sin(pt+S) where p and A are nearly equal, we
have just seen that this force will produce a magnified oscillation.
But if any resisting forces, which vary as the velocities, act on
the system, these resistances will introduce a real exponential
into the free oscillation (Art. 319). Thus the type of the dis-
turbing force will be no longer the same as that of the free

icles. We conclude that one effect of the resistances on a dis-
turbing force which would otherunse produce a magnified forced
oscillation 18 to modify that oscillation and keep it within bounds.

840. As a simple example of this dynamical principle, let us consider how
easily a heavy swing can be set into violent oscillation by a series of little pushes
and pulls if properly timed. If we push when the swing is receding and pull when
it is approaching us, the swing is continually accelerated and the arc of oscillation
will be greater and greater at each suoceeding swing. Such a series of alternations
of push and pull is practically what we have called a permanent disturbing force
whose period is the same as that of the free vibration of the swing. But if the
period be very unequal to that of the free vibration though a few pushes and pulls
may increase the are of vibration yet a time comes when the effect is reversed. The
force acts opposite to the motion of the swing and the oscillations will decrease just
a8 they before increased.

841, We may take a second example from the rolling of ships at sea. The
ghip has its own natural vibration together with that forced one which follows the
oscillation of the waves. If the periods of these synchronise the rolling of the
ship may become very great. Mr White in his Manual of Naval Architecture men-
tions several interesting examples of this, After noticing how some vessels are
made to roll heavily by an almost imperceptible swell, he mentions the case of the
Achilles, a vessel of great reputation for steadiness, which rolled more heavily off
Portland in an almost dead calm than it did off the coast of Ireland in very heavy
weather. Again in the cruise of the combined squadrons in 1871, though the
Monarch far surpassed most of the vessels present in steadiness when the weather
was heavy, there was one occasion (possibly owing to a near agreement between the
natural period of this ship and the period of the waves) when the ship rolled more
heavily in a long swell than some of the most notorious heavy rollers.
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842, A good use of this principle was made by Oapt. Kater in his experi-
ments to determine the length of the seconds’ pendulum. It was important to
determine if the support of his pendulum wag perfectly firm. He had recourse
to a delicate and simple instrument invented by Mr Hardy a clockmaker, the
sensibility of which is such that had the slightest motion taken place in the support
it must have been instantly detected, The instrument consists of a steel wire,
the lower part of which is inserted in the piece of brass which forms its support,
and is flattened so as to form a delicate spring. On the wire a small weight slides
by means of which it may be made to vibrate in the same time as the pendulum
to which it is to be applied as a test. When thus adjusted it is placed on the
material to which the pendulum is attached, and should this not be perfectly firm,
the motion will be communicated to the wire, which in & little time will accompany
the pendulum on its vibrations. This ingenious contrivance appeared fully adequate
to the purpose for which it was employed, and afforded a satisfactory proof of the
stability of the pomt of suspension, See Phil. Trans. 1818.

843, It has been shown in Art. 838 that a disturbing force may produoe 8 large
vibration in « if its period be such that the denominator A () is small. But this
result is affected by the operator 7 (3) which occurs in the numerator. If for
instance the result of the operation of the minor I (5) be zero, the forced vibration

disappears.
Now these minors are just the operators used in finding the free vibrations.
Thaus in Art, 262, we have - &=I(3)[type].

If then any one of the free vibrations be absent from one of the co-ordinates
though present in the others, then a disturbing force of nearly the same period will
not produce a large forced vibration in that co-ordinate. We infer that & disturbing
Jorce can produce a large forced vibration in any co-ordinate only if there be in that
co-ordinate a free vibration of nearly the same period and containing nearly the same
real exponential.

844. If the force be nearly equal to Pe~*!sin (At + ), it may occur that the deter-
minant A (8) has a roots equal to —x+A o/ —1, while the minor I (5) has none of
them. In this case the forced vibration will be divided a times by a small quantity
and is said to be magnified « times. But if the minor I(8) has 8 of these roots, the
forced vibration will be magnified a — 8 times. By reference to Art. 272 we see that
the co-ordinate « has in this case powers of ¢ up to the (a — 8— 1)* in the coefficients
of its free vibration. We infer that the forced vidration in any co-ordinate will be
magnified once more than the highest power of t which occurs in that co-ordinate in
connexion with the free vibrations of nearly the same period.

845. As an example let us consider the case of a planet deseribing a circle about
the sun congidered as fixed in the centre. If slightly disturbed the change in the
radius vector and longitude will be small and these changes may be represented by
what we have called x and y. From the theory of elliptic motion we know these
will be approximately z=a—ae cos (nt+a),

y="bt+c+ 2e¢sin (nt+a),

where a, b, ¢ are small quantities and 2x/n is the period of the planet. These are
of course the free vibrations. Comparing these with the type sin (At +a) we see that
two free vibrations occur in z, viz. A=n and A=0. There are three free vibrations
in the expression for y, viz. A=n and two equal values of A each zero. These equal
values introduce the terms with powers of ¢ as explained in Art. 266,
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Woe infer that any small permanent periodical force will produce & magnified
disturbance both in the radius vector and longitude of a planet, if its period is
nearly equal to-that of the planet-or is very long. 8ince there are two equal free
periods in the longitude whose type is A=0 and only one in the radius vector, those
small disturbing foroes whose periods are very long will be twice magnified in their
effects on the longitude and onoe magnified in the radius vector. If any such forces
as these act on the planet it will be necessary to examine into their effects. Small
disturbing foroes, whose magnitudes are less than the standard of small quantities
to be retained, may be disregarded only if their periods are different from those
just indicated.

These rules are used in the Lunar and Planetary Theories to assist us in estimat-
ing the values of the disturbing forces. They enable us to separate from the crowd
of small foroes those which can produce sensible effects on the motions of the
planets.

346. How a disturbing force is diminished. Let us resume
the expression given in Art. 326 for the forced vibration due to
a continuous disturbing force. We remark in the first place that
the denominator of the coefficient contains higher powers of A
than the numerator. To show this it may be sufficient to notice
that the determinant of the motion A (3) has two powers of § more
than any of its minors. We therefore infer that, in the limit,
when A 18 very great, i.e. when the period of the disturbing force s
much smaller than that of any free oscillation, the forced mbration
produced 18 in general insigmficant.

347. When the type of a continuous disturbing force £ (¢)
which acts directly on the co-ordinate # is such that it satisfies
the differential equation I, (8) f(¢)=0, we remark in the second
place that the forced oscillation in the co-ordinate # wholly
vanishes. Now I, (8)=0 is the determinantal equation whose
roots give the free vibration when the co-ordinate « is constrained
to be zero. We infer that when the type of a disturbing force
which acts directly on any co-ordinate x 18 nearly the same as any
one of the modes of free vibration when x s constrained to be zero,
then the forced vibration in x will be very small.

848. Ex. A tight string, whose extremities 4 and B are fixed, is acted on trans-
versely at any point C by a permanent disturbing force. - If the period of the force
be equal to any one of the periods of a string stretched with the same tension but
whose length is either 4C or CB, show that the forced vibration will not disturb the
point C. If the strings 4C, CB have no free period in common, show that one
string will not be moved by the forced vibration.

We may also deduce this result from some elementary considerations. Let the
string be held at rest at C and let the part AC be set in motion, CB being at rest.
The pressure at C when resolved perpendicular to the string will represent a per-
manent disturbing force whose period is equal to that of any one of the free vibra-
tions of 4C. Replacing the pressure by the disturbing force we have AC in
vibration and CB at rest. '

349. How an Impulse is diminished. When a system of
machinery is moving in some state of steady stable motion it may
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be liable to disturbance from any sudden jerks whose effects it
may be important to diminish as much as possible. Let us con-
sider briefly what means we have to abate an impulse.

When the jerk has completed its work and has ceased to act,
the system is displaced from its proper state of motion. It now
begins to oscillate about this state. Thus the effect of the jerk
18 to introduce a new set of “free oscillations.” If there be any
forces of resistance these free vibrations will begin to fade away
and the system will tend to assume a state of steady motion.
One method of correcting the effects of a disturbing impulse is there-
Jore to increase the resisting forces.

These resistances which are thus intentionally introduced into
the machinery should be properly arranged. They should be such
as not to affect the steady motion, but to begin to act only when
the machine deviates from its intended course. An example of
this has been given in Art. 105, where the motion of the Governor
was discussed.

850. The actual effect of a jerk X on any eo-ordinate such as x is easily deduced
from the equations of Art.118. If A be the discriminant of the quadric 4 where
24=Ap 24 242y + ... and I, the minor of the constituent 4,,, we have

32, - 8z = (Iy/8) X. -

If then it is important to lessen the effects of the impulse X, we may make
some addition to the machine or modify the arrangement of its parts so as to in-
crease the discriminant A as compared with 7 as much as possible.

If the function 4 be a positive one-signed function, its discriminant A is positive.
‘We may then show, as in the next article, that the ratio of I, to A is in general
decreased by the addition of the square of any linear function of z, y, &o. to the
function 4, Now the quadric function 4 with accented co-ordinates is part of the
expression for the vis viva (Art. 111) and is always a positive function. Hence if
any addition be made to the vis viva the corresponding addition to this function is
also positive and may be expressed as the sum of a number of squares of linear
functions. We may therefore in general weaken the direct effects of jerks on a
system by increasing the expression for the vis viva,

The usual method of effecting this is to attach a fly-wheel to the machine, The
vis viva of a rotating body is Mk2w? where Mk? is the moment of inertia of the
body about the axis and w is the angular velocity. The advantage of using a wheel
is that with a given quantity of additional matter, the additional terms may be in-
creased to any extent by increasing the radius of gyration.

351. Ex. 1. If the co-ordinates be so chosen that the square factor added to
the quadric 24 is of the form uy?, where y is any co-ordinate other than z, show
that the ratio Ij;/A becomes (I, +xA,)/(A +ply); where A, is the second minor
formed by omitting the two first rows and columns, and the suffix of each I indi-
cates as usual the constituent of which that I is the minor. Show also that the
second ratio is less than the first by I, %u/A (A+puly). Show also that this
difference is positive or zero and has a finite limit when p is infinite.

Ex. 2. If the square factor added to the quadric 24 be u(ax+dy+ez+...)%
show that the direct effect of an impulse represented by X on the co-ordinate z will
not be altered by this addition to the inertia if a2l,,2+ 2ably I}, + b%L 2 + ... =0.

R.D. IIL 13
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352. The interval at which any phase of effect follows
the same phase of cause. Any disturbing force tends alter-
nately to increase and decrease the deviation of the system from
its undisturbed position, but it is not true that this deviation
actually increases when the force urges an increase or decreases
when the force urges a decrease. To examine into this point we
notice that by Art. 327 the forced vibration produced by a disturb-
ing force Pe—*sin(Af+a) is

Pe~{L sin (M + a) + M cos (At + @)}
=PI+ Me—sin (M + a + tan™ %) .

In this transformation it is clear that if the square root in the
coefficient be regarded as positive, the angle added to the phase
must be such that its sine has the same sign as M and its cosine
the same sign as L. The consequence is that all the possible
values of the change of phase differ by multiples of 2.

Comparing the expression for the forced vibration with that
for the disturbing force we see that their maxima do not occur
simultaneously. The maximum of the oscillation occurs later than
the maximum of the force by an interval equal to — (1/A) tan™ (M/L).
In the same way every phase of the oscillation follows the corre-
sponding phase in the force after the same interval.

The change of phase in any co-ordinate thus depends on the
values of L and M for that co-ordinate. These are easily found
by the rule given in Art. 327, where it is shown that if we write
8=—«x+Ay/—1 in the operator I(3)/A (8) for that co-ordinate the

result is L+ M,/—1.

853. If the disturbing force be permanent, i.e. be of the form Pgin (At+a),
and if the forces of resistance be neglected, the determinant A (3) contains only
even powers of 3 and is therefore real after the substitution 3=XA./—1. We infer
therefore that if the minor I(3) be also real when the same substitution is effected,
the phase of the forced oscillation is the same as that of the force or is greater by
x according as L=1I(8)/A(3) is positive or negative. If the minor I(d) is of the
form H,/—1, the phase of the oscillation is greater than that of the force by +i=
or — }x according as I(5)/8A(3) is positive or negative.

If we consider the direct effect of a force on any co-ordinate the minor I(3)
contains only even powers of 5, as well as the determinant A (5). If the centrifugal
forces are absent ags when the system oscillates about a position of equilibrium,
every minor eontains only even powers of 3. In all these cases the forced vibra-
tion is simply a multiple positive or negative of the disturbing forece without
farther ehange of phase.

3854. Ex. A particle describes a nearly circular orbit about a centre of force
which attracts according to the Newtonian law, and is acted on by a permanent
disturbing force along the radius vector, Show that the particle at any moment is
inside the mean circular orbit when the force acts ontwards and outside when the
force acts inwards, provided the period of the force is less than that of the particle
in its undisturbed orbit round the centre of the force. But the reverse of this is the
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case if the period of the distarbing force is greater than that of the particle. Would
there be a gimilar distinction of oases if the centre of force attracted avcording to
some inverse power greater than 3?

Second approzimations.

355. When we try to find the oscillations of a dynamical
system we generally proceed by continued approximations. We
first reject all the squares of the small quantities and thus obtain
a set of linear differential equations. Solving these we substitute
the results in the terms of the second order and treat these
functions of ¢ as disturbing forces. Their corresponding forced
vibrations are then found. The operation may be repeated for a
third approximation and 8o on.

It has been shown in Art. 337 that when the forces of resistance
are small, a permanent disturbing force whose period is nearly
equal to that of any one of the free vibrations produces a magnified
forced vibration. It follows that a small force of proper period
which would appear in the differential equations only when we
include terms of (say) the third order may produce oscillations in
the co-ordinates which are of the second or first order.

If therefore we wish to have our results correct to amy given
order it will be necessary to retain, for examination, those periodic
terms in the differential equations of higher orders whose periods
are nearly equal to any of the free nbrations.

We also see the importance of proceeding to higher approxima-
tion. These small terms which produce such large forced vibra-
tions may not make their appearance until the terms of the higher
orders are examined. Thus some important oscillations may be
missed if we stopped at a first approximation.

856, When we substitute our first approximation in the terms of the higher
orders it sometimes happens that permanent disturbing forces make their appear-
ance whose periods are exactly the same as those of some of the free vibrations
included in the first approximation. When this occurs, it has been shown in
Art. 328 that the forced vibration changes its character. The solution now con-
tains terms with powers of ¢ as factors, These terms (not being balanced by the
proper exponential factors, Art. 283) will become large, so that the system will
depart widely from the state indieated by the approximate solution.

This is another way of saying that what we have taken as oar first approx-
imation is not sufficiently near to the truth to serve as an approximation. In
most dynamieal problems the disturbing forces are given as functions of the co-
ordinates and then by the approximate solution expressed as functions of the time.
Thus the expressions for the forces themselves are only approximations. It may
therefore happen that if we can obtain a more correct first approximation to the
motion the small terms which indicate such a large departure from the first
approximation may not make their appearance. )

To find a sufficiently correct first approximation to the motion it may not be
enough to take the solution of the differential equations when all the terms of the

13—2
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higher orders are meglected. We must include in these differential equations all
those small terms of the higher orders which so materially affect the motion. The
solution of these modified equations (if one can be found) is to be taken as our first
approzimation. B

Let us repeat the argument in a slightly different form. The first approximation
oomprises all the largest terms in the expressions for the coordinates and may
generally be taken to represent the visible motion of the system., If now a disturb-
ing force, such as that we have just described, act on the system, it greatly modifies
the visible motion and in turn its own period is modified by the change of motion.
. Thus the system takes up some new state of steady motion with oscillations about
that steady motion. This obliges us to abandon the former first approximation
in order to use one which may be a permanent representation of the new visible
motion.

‘When we examine this new first approximation, as in the following examples,
we find that it sometimes has the same general character as the former, but with
the important exception that the free vibration whose period was the same as that
of the force has been greatly modified. We therefore infer that when a small
disturbing force is wholly or in part a function of the co-ordinates and has the same
period as a free oscillation of the system, it may have the effect of removing that type
of free oscillation from the system and replacing it by some other type of a different
period.

857. Before proceeding to the general theory we shall illustrate the method of
proceeding by a simple example.

A particle oscillates in a straight line about a centre of force whose attraction at a
distance z is represented by p*z +Bz3. Find the time of a small oscillation.

The equation of motion is clearly

d*x
at,-l-p’z: =BT (1).

As a first approximation we reject the term on the right-hand side as being of the
third order of small quantities, We then find
T=M8in (PL4a)...c.cceiiiiiieeiiiiiieerireeene (2).
Proceeding to & second approximation we substitute this in the term previously
rejected. We have '
dz Basia .
atpz= _ZM {8sin(pt+a)~sin8(pt+a)}................(3).
The first trigonometrical term on the right-hand side has the same period as the
oscillation which represents the first approximation and will therefore modify
considerably that approximation (Art., 856). To include its effects we must alter
equation (2). This modified solution when substituted in the differential equation
must make the lefi-hand side, not equal to zero as before, but equal to a very small
quantity, viz. the small disturbing force. As a trial solution we shall therefore
retain the same general form. The letters M and a being undetermined will still
serve for general symbols, but we shall replace p by p+u where u is some small
quantity to be determined by the disturbing force. We shall therefore write the
first approximation in the form

e=Msin {(p+p) t+a}ececeeeririiiirinenrininnnnen, (4).
Proceeding to a second approximation we have
d*z 38

g tPe= - Msin{(p+p)t+a)}.
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If our correction be successful, this equation must be satiefied by our amended first
‘approximation. Substituting we find the equation is satisfied provided

M{-(p+pP+p'}= -1
p.=§§ M? nearly.

Thus the oscillations of the particle about the centre of force are very nearly
represented by equation (4). The effect of the disturbing force — 8z® is to shorten
the time of oscillation by & quantity which depends on the square of the are.

358. If the force of attraction had been p2z+ 8 (dz/dt)® instead of that given
above, we may show that this process would have failed.
Taking the first approximation as before and substituting in the differential
equation we obfain
&z, B s .
Ja tpe= —1M {8cos (pt+a)+cosd (pt+a)l.
Neglecting the second trigonometrical term as before, let us try to include the other
in our first approximation. Taking the amended form (4) and substituting we find
that we should have
M {-(p+p)+p*} sin{(p+p)t+al= - {BAF cos{(p+p) t+al.
But this equation cannot be satisfied by any constant value of x. The effect of this
disturbing force is therefore not merely to alter the time of oscillation.

859. Ex. A particle describes a nearly circular orbit about a centre of force
whose attraction at a distance r is represented by u (u?+ Su”) where u is the re-
ciprocal of r. If 8 be very small show that the path is nearly represented by

u=a{l+ecos(cd-a),
where ‘e=1-3Ba"3(n-2){1+3 (n—3)(n—4) &+ &e.},
provided the square of 8 can be neglected. This example is a modification of a case
which occurs in the Lunar Theory.

360. General Theory. Having illustrated the method of treating the terms of
the higher orders by several examples, we shall now consider the subject more
generally, Our object is to so modify the first approximate solution as to include
in it (when such a thing is possible) the effects of small forces whose periods are the
same a8 those of the free vibrations (Art. 356). The general result arrived at will
be given in the summary at the end of the argument,

We shall suppose the left-hand sides of the differential equations to contain
ali the first powers of the small coordinates z, 9, z, &e. These therefore take the
form given in Art. 324 or more generally Art. 262. The disturbing forces are placed
on the right hand sides and contain powers and products higher than the first of
the co-ordinates z, y, &ec., and their differential coefficients, Thus all these dis-
turbing forces would be neglected if we took into account only the terms of the
first order. 'We shall also suppose that these disturbing forces are not explicit
functions of the time. If this condition be not satisfied, the following analysis
must be slightly modified.

861. To avoid a complication of symbols let us resume the exponential values
of the sine and cosine. Let then the first approximation obtained by neglecting in
the differential equation all terms beyond the first order be

=M g™ty Moty ...
y=Nle""t+N,¢’""+...}
&eo.=&o.
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where m,, m,, &o. aro the roots real or imaginary of the determinant A (3) (Art. 262).
On proceeding to a second approximation we substitute these values of z, y, &e. in
the several small terms which were before neglected. Taking some term which
contains the products and powers of the variables the result of the substitution
produces disturbing forces of the form

IPd/mtemt.)t . reerreneensenans @)

where the order of the term is f4g+... If these quantities f, g, &e. are such that
any number of relations hold of the form
I gmed =My, (3),

there will be just so many of these disturbing forces which take the type Pe™*
The forced vibrations derived from these are obtained by using the operator I(3)/A (3)
and are evidently infinite, To include these in the first approximation we replace
the equations (1) by =M™ Mt

1=N1¢""+N,e"'f+...}

&e.=&o,
where the M’s N's, &o. are not necessarily the same as before, and each n only
differs slightly from the corresponding m. Substituting as before we of course
obtain a disturbing force of the form (2) but with n’s written for the m’s. If we
asgume the same relations to hold as before between the exponents, viz.
Tt gnat =0 centernaeand (5),
this force will take the type Pe™?f. There may also be other relations similar to (5)
but with n, or n,, &e. written for n, on the right-hand side and these will introdace
other disturbing forces whose effects have also to be included in tha new first
approximation. .
Including these forces we may write the differential equations in the form

Ju(®) 2+ (N y+... =Pt Pty
fa(®) 2+Sx (5)y+".=Q1¢m¢+Q’¢"l¢+.._} ......... vecesersses (8),
&e. =&,

where the fanctional symbols f;, (3) &c. have been used for the sake of brevity. If
we have been successful in including the effects of these disturbing forces in our
new first approximation, these differential equations must be satisfied by the values
of z, y &o. given in (4), Substituting we have

Ju () My+fia () Ny +...=P;
Ja () My+ foa () Ny +...=Q }
&e. =&c.

with similar equations for each of the other disturbing forces.

In these equations the M’s are to be regarded as arbitrary, their values being
reserved to satisfy the initial conditions of the motion. Our object is to find the
values of the remaining coefficients, viz., the N’s and also the values of the n’s in
terms of the M’s. These values of the n's must also satisfy the relations (5).
Supposing this test to be satisfied we have found values of the co-ordinates which
satisfy the differential equations to the first order, and include the disturbing forces
which appeared to threaten the stability of the system.

862. The forces P, Q, &c. may each consist of several terms of different orders
of smallness. But the lowest is supposed to be of a higher order than the coefficients
M, N &c. Taking only the lowest powers which ocour in P, @ &c., we may easily
find a first approximation to the values of n;, n, &o. Solving the equations (7) we
find . M; A (m) =Py I (my) + QT (ny) + &e.,
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where I, (n) &c. are as usaal the minors of the determinant A (n). Let n,=m, + g,
ny=my+p, &o. Since all the terms on the right-hand side are smaller than M, we
may in these terms write n,=m,, ny=m, &e. Remembering that A (m,) =0, we have

o, dAdtf:':l) pa= Py Ty () + @y Iy () + &rverreevrrerrseeenee ®).

In the same way we have
Mndﬁ,g:’) py= Py Iy (m5) + Qa Iy (mg) + &o.

The forces P, &c. are functions of M;, N, &e., M,, N, &e. But looking at equa-
tions (7) we see that the ratios of M;, N, &c., differ from the ratios of the minors
I,; (my), Iz(my) &e. by quantities of the order P/M. We may therefore in calecu-
lating the values of P, &o., substitute for N, &e., N, &ec. by the help of these ratios.
Thus the right-hand sides of the equations (8) are all known functions of the
arbitrary M’s and of the roots of the determinantal equation A (5)=0.

The quantities f, g &o. are usunally positive integers. In this case the orders of
the quantities P &c. are not less than f+g+&c. It follows that the corrections
s g &c. are of the order f+g+ &e.—1 at least.

363. Summary of results. We may embody the results of equations (8) in a
rule.

Taking the first approximation viz. z=M,e™*+ &e. found by rejecting all terms
of the higher orders in the differential equations, we proceed to a second approxi-
mation. Suppose that in consequence of some relations such as

Jmy+ gmg + &o. =m,,

we arrive at disturbing forces P,e™¢, Pye™¢ &o. These would produce infinite
terms in the co-ordinate #, if we employed the operators I (5)/A(3), &e. as usual
(Art. 326). Instead of these let us employ the operators I(3)/A’(3), &c. simply
replacing A (5) by A’(3). Let the result be z=He™t + Ke™# 4 &c., whero H and K
contain powers of M,, M,, &c. above the first. Then the effects of these disturbing
forces may be taken account of to the next approximation by replacing the first
approximation by z=M;e™*#)ey 3, Mtudt where u = HIM,, p,=K|M, &o.,
provided these new indices satisfy the relations fu;+ guy+ &o. =u,, &e.

Supposing this condition to be satisfied, we see that a disturbing force of the
same type and period as a free vibration has the effect of removing that type from
the system and replacing it by some other type of vibration which is more and more
xremote from the original type the greater the amplitude of the vibration.

364. Examples. A pendulum swings in a very rare medium, resisting partly as
the velocity and partly as the square of the velocity, to find the motion.
Let 8 be the angle the straight line joining the point O of support to the centre
of gravity G of the pendulum makes with the veriical. Then the equation of
tion i ae g. ., 9 de _ (do\* 1
motion is an TpERO=-2 g —p{ g} Crresrenaneens 1),
where I is the length of the simple equivalent pendulum, 2« and x the coefficients
of the resistance divided by the moment of inertia of the pendulum about the
axis of suspension. Let g=In3, Since ¢ is small we may write the equation in the
@20, a9 (LAY

form E‘;+n0—-2xa-i—u(a) +ﬂ'€ e

Since « and @ are very small, we might at first suppose that it would be
sufficient as a first approximation to reject all the terms on the right-hand side.
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This gives 8 =a sinnt, the origin of measurement of ¢t being so chosen that ¢ and ¢
vanuhtogeﬂm- If we substitute this in the small terms we get
a»
s
which gives #=a 8in nt — xat sin nt + yi na® cos nt + &e.
These additional terms contain ¢ as a factor, and show that our first approximation
was not sufficiently near the truth to represent the motion except for a short
time. To obtain a sufficiently near first approximation we must include in it the
" small term 2x d6/dt (Art. 856). We have therefore )
arw
e
This gives 0=ac™ "¢, linmt,whereforthe sake of brevity we have put n?— x*=m3.
In our second approximation we shall reject all texms of the order a® or a3«
unless they are such that after integration they rise in importance in the manner
explained in Art. 344. We thus get
a0 dé paim®
2

]
ga Tk g o= - = ¢~ (1.4 cos 2mt) +'—'— a'e

——+n30=—2xn . a co8 nt + } n®a®sin nt + &e.,

+2xd0+n’0-0

~Sxt
(3 sin mt — sin 3me)

, - padxe™ "“(—§+2m£m¢+msm2uu)

where all the terms on the right-hand side after the first are of the third order, and
are o be rejected unless they rise in importance, To solve this, let us first consider
the general case
::f+2xd—0+n’0_ —Pxt (4 ginrmt+ B cosrmt).
Put 0=¢"P* (Lsinrmt+ Mcosrmt). Substituting we get
Li{(p-1)%2+m*(1- "} +2(p-1) xrmM:A}
M{(p-12*+m*(1-r2)}-2(p-1)xrmL=B

Now « is very small. If then r be not equal to unity, we have L= mf—-r’) ,
H=— B nearly; but if r=1, we have L= =B M= 4 nearly.

mi(1-19) 2(p-1)xm’ 2(p-1)xm
The case of p=1 does not occur in our problem. It appears that those terms only
in the differential equation which have r=1 give rise to terms in the value of =
which have the small quantity x in the denominator. Hence in the differential
equation the only term of the third order which should be retained is the first.
We thus find, putting successively r=0, r=2, r=1,
0=¢c"“sinmt—’"'—é—’c‘2“ +"—;‘e—2‘toos 2mt +;—;{a—;e"3“‘ cos mt.

This equation determines the motion only during any one swing of the pendu-
lum; when the pendulum turns to go back u changes sign. Let us suppose the
pendulum to be moving from left to right, and let us find the lengths of the arcs of
descent and ascent, To do this, we must put d6/dt=0. Let the equation be written
in the form @=7(t), then if we neglect all the small terms, df/dt vanishes when
mt=2}r. Putthen mt= -4+ where = is a small quantity, we have

ro=r(-gm)+s (- 55)5=0.

Now
2
7' (8)=ae="t (meos mt — x sin mt) -2 ¢~ 2t —2x+&oos?mt+2—"—'sin 2m¢
2 8 3
+—"1“— ¢~3%¢ (_ m sin mi - 3x cos me).

32xm




OSCILLATIONS OF A PENDULUM. 201

A gufficiently near approximation to the value of f” (t) may be found by differ-
2,3
entiating the first term of the value of /' (). We thus find z= - £ _Spac o’
the second of these terms being smaller than the other two might be neglected.
‘We also find as the arc of descent

RPN 4 = s =

’ 2m 2 2,m 2m , % om
‘f( 2m)+f ( om)m= [“ +ghat ’”{"“ * 32am }]
33

Similarly to find the arc of ascent we putmt-——+y This gives y = —% - ;2—:1”
and the arc of ascent is

=y ...
O=ae 2”'—5‘ 2e ™ —y{xae Iy —e 2‘”‘} .

In these expressions for the arcs of descent and ascent the terms containing z
and y are very small, and assuming « not to be extremely small, these terms will be
neglected *.

Now « is different for every swing of the pendulum, we must therefore eliminate

a. Let u, and u,,,, be two successive arcs of descent and ascent, and let A= ™<"/2%,
go that \ is a little less than unity, Then we have

1 2 1
Uy —a)\+5[w. 30 u,,ﬂ_a)\——;m’)\
eliminating a we have very nearly 1 +% :,(] +%) s
3 1 )\’ 3w

where =0 1730~ Zum nearly.

The successive arcs are, therefore, such that 1/u, +1/c is the general term of a
geometrical series whose ratio is &**/™, The ratio of any are u, to the following arc
L34 13

Unar 18 - dn _omytaem_y),

Uniy
which continually decreases with the arc. In any series of oscillations the ratio is
at first greater and afterwards less than its mean value. This result seems to agree
with experiment.

To find the time of oscillation. Let ¢, ¢, be the times a which the pendulum is
at the extreme left and right of its arc of oscillation. Then

* x n%? _m_x_m?

The time of oscillation from one extreme pogition to the other is ¢, — ¢ which is
equal to wr/m. This result is independent of the arc, so that the time of oscillation
remains constant throughout the motion. The time is however not exactly the
same as in vacuo, but is a little longer; the difference depending on the square of
the small quantity x. See Art. 321.

Ex. 2. Arigid body is suspended by two equal and parallel threads attached
to it at two points symmetrically situated with respect to a principal axis through
the centre of gravity which is vertical, and being turned round that axis through a
small angle is left to perform small finite oscillations. Investigate the reduction to
infinitely small oscillations. [Smith’s Prize.]

* If these terms are not neglected the equation connecting the successive ares of
2
descent and ascent becomes 1 _»__ —I‘(1+>\’)+ ' 1——1 Now 1- )“-2"
Uy Upyy A
nearly, so that this additional term is very small compa.red with that retained.




CHAPTER VIIL

DETERMINATION OF THE CONSTANTS OF INTEGRATION IN TERMS
OF THE INITIAL CONDITIONS.

Method of Isolation.

365. OUR object in this chapter may be very briefly stated.
Given any number of simultaneous differential equations with
constant coefficients, it is known that the dependent variables
, v, z, &c. can be expressed in terms of the independent variable ¢,
by means of a series of exponentials real or imaginary. Let one
of these exponentials be = Me™, then M is a function of the
initial values of the variables z, y, &c. and of their differential
coefficients. It is here proposed to exhibit this function. Thus,
without solving the equations, any one term of the solution, if its
exponent be known, can be separated from the others and its
value written down, without finding those other terms.

When the differential equations are not of a high order we
can generally solve the determinantal equation and find all the

ible values of m. In such a case it is merely a question of
algebra to find the constants in terms of the initial values of the
variables. We may, however, effect this more briefly and simply
by using the rule here given. Sometimes it is impossible to
solve the determinantal equation. We may find one or more
roots, but the rest remain unknown. In such a case we could
not proceed by the processes of common algebra, for the equations
cannot be written down.  Our object ©s to find the constants which
accompany these known terms without the knowledge of the re-
maining ones.

This method is very simple and easy of application when the
exponential to be separated from the others is connected with a
solitary root of the fundamental determinant. But it may be
used even though the root is repeated several times. The com-
plication arises from the fact that the exponential is then accom-
panied by as many constants as there are equal roots. Each of
these requires a separate operation to find its value.

The method is generally applicable whatever be the order of
the equations, but there is considerable simplification when the
order is not higher than the second. This is of course the most
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interesting case, as the equations may then be such as oceur in
Dynamics.

In some cases the rule can be put into another form, which
may possibly be thought simpler. In these cases it takes the
form of the Method of Multiplierss. When the number of de-
pendent variables is infinite, we have an example in Fourier’s rule
to expand any function in a series of sines or cosines.

366. The Determinant of Isolation. Resuming the no-
tation of Art. 262, we let the n equations to find #, y, 2, &c. be
written in the form

fu®z+f O y+f()z+...=0
Ju@® e+ D)y + 1B 2+ .= o} ,
....................................... =0

where 8 as before stands for d/df. In dynamical applications
these functions of & are all of the second degree, but at present we
make no restriction of that kind.

To solve these we proceed as explained in Art. 262 and
form the determinant

A@)=|fu(®, Sa®) fis() ...
Ju(®) foa(®), fou(®) ...

------------------------------

If we equate this determinant to zero, we have an'equation to
find 8. Let its roots be m, m,, &c. omitting the suffix of the first
for the sake of brevity. Then we know that
x=Me™+ Me™ + ...

It is our present object to find any one of these coefficients, say M,
without finding any of the others.

To effect this we deduce from the determinant A (3) another
determinant, which we write

II (m) = fng :{n;lm o +‘f“g :72:_"_' y+ &C., fn(m)’ f;s (m> &e. |

Tl A g 1 T =Ly 4 e, () fu(m) & |

-------------------------------------------------------------

We form this determinant by the following rule. Erase any
column of the determinant A(9), say the first column. To replace
it we dvmde the first equation by 8 —m, and rejecting the remainder
place the quotient in the first row of the erased column. We divide
the second equation by 6 —m and place the quotient in the second
row, and so on. Finally we put 8=m in the remaining columns.

If we erase the second column of the determinant A(8) or
A (m) we obtain a slightly different determinant, which we may
write II,(m), the suffix indicating which column of A(m) we erase,
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The determinant II(m) is evidently a function of the co-ordi-
nates z, y, &c. and their differential co-ordinates with regard to ¢
up to the (n—1)th. For all these we write their given initial
values. We then have

_I(m)
- AI (m) ]
where A'(m) means as usual the differential coefficient of A ()
with regard to m. In the same way if Ne™ be the corresponding
11, (m)
Al (m) ’
867. Bxamples. Before proceeding to the demonstration of this theorem let
us consider some examples.
. . (B-43)z-(3-1)y=0
Ex. 1. Taking the equations ((8+6))a:+(1(5'-6)y=0} ,

we see that the fundamental determinant
A(m)=|m?~4m, - (m-1)|=m*—5m3+5m*+5m -6,
m+6 mi-m

Equating this to zero, we find that one value of m is m=—~1. Let us find the
coeficient of ¢ in the value of z.

Dividing the equations by §+1 and rejecting the remainders, we form at once
the second determinant, viz. o (m)=|(3-5)z-y, 2"

: z+(3-2)y, 2
the second column being obtained by putting m=- 1 in the second column of A (m).
Expanding, and noticing that A’ (m)=- 24 when m=-1, we find
—12M =8z - 8y -6z +y,
where M is the required coefficient. Here z, y, 3z, 3y are supposed to have their
known initial values. .

‘We may show in the same way that there is a term M’e* in the value of =
where —3M'=28z+3y-3x-y.

Ex. 2. Let us take another example, in which the differential coefficients rise
to a higher order, but let us still restrict ourselves to two dependent variables to
save space. Taking the equations

(8% +20%+0+1) 2+ (33 +20+1)y=0
(P+25+2)z+(3*+ 3+2) y=0} '
we see by inspection that the determinantal equation is satisfied by m=1. Thus
#=Me* is a part of the solution. Let it be required to find M when the initial
values of 3z, 8%, 3y, 8%, &% are all zero, and the initial values of z and y unity.
Constructing the function II by dividing each equation by 5-1, and putting =0
a8 we proceed, we have II (m)= | 4z + 3y, 4 l=”A'(m)-
8z+2y, 4

But, differentiating the determinant without expanding it, and putting m=1, we
have A’(m)=16. Hence, putting z and y each equal to unity, we immediately find
M=3.

368. We now proceed to the proof of the rule given in Art.
366

term in the value of y, we have N= and so on.

Let p be some quantity which we shall write for m in the
definition of the determinant II(m) in order to call attention to
the fact that p is not necessarily a root of A (8)=0.
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Taking the general expression for the determinant II (p) given
in Art. 366, we may resolve it into the difference of two determi-
nants, the first rows of each of which may be written as follows.

() = 52 | £u@ o+ fu®y+ &e, £u(8), &e

- 3—_1_"13 lfu(P)-” +fa(P)y+ &e., fio(p) &c.

Consider the first determinant, the first column is occupied by the
functions which form the ditferential equations. Hence this deter-
minant vanishes whenever z, y, &c. have values which satisfy the
differential equations.

Consider the second determinant, it may be made into the
sum of as many determinants as there are terms in the leading
constituent. All these determinants have two columns the same
except the first determinant. This first determinant is clearly
A(p)e.

It immediately follows that

@-pI(p)=-A(p)=

Solving this linear differential equation in the usual way, we have
II(p) + A(p)e? [ e #adt = Ce¥.............. ... Q).

Here p is any quantity at our disposal and @, y, &c. have any
values which satisfy the differential equations.

"To find the value of the constant C, we put {=0. The second
term on the left-hand side is then zero because the limits coincide.
It follows that C is the value of II(p) when we write for z, y, &c.,
oz, 8y, &c. their initial values,

Since p is arbitrary we may differentiate the equation partially
with respect to p. Differentiating and putting p =m, where m 1s
a solitary root of the equation A(p)=0, we find

dIl (m , . dC
—77(;—) + A’ (m)e™[je~™adt = Cte™ + dp em, ,

Let us now substitute &= Me™ 4 M ™ + &c. with the corre-
sponding values of y, 2, &c. in the left-hand side of this equation
and let us search for terms of the form tem!, The operator
dII(m)/dm is a linear function of #, y, &c., 8z, &c, and can
clearly give rise to no term of the required form. The re-
maining portion of the left-hand side gives only the single term
A’(m) Mte™ of the required form. Equating this to the corre-
sponding term on the right-hand side we have A'(m) M =C. Since
C is the initial value of II(p), this equation is exactly equivalent
to that given in Art. 366.

869. On Repeated Roots. When the root p=m is a repeated root of the equa-
tion A (p)=0, the demonstration just given no longer applies. Since p is arbitrary
we may differentiate the equation (1) as often as we please, and after each differen-
tiation we may write p=m. Since A(m)=0, A’(m)=0, &o. the successive lgft-hand
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sides reduce to II (m), dII (m)/dm, &e. On the successive right-hand sides we have
only terms which contain the exponential e™. .
It follows that if A (p)=0 have a roots each equal to m, the operators
dll (m) Pl (m) a1 (m
hig (M), —d_'(l—-) ’ ’—dm,‘ 9 sesens f—m—.%)
all produce zero when we substitute for x, y, dc. any solutions of the differential
equations which do not contain the exponential e™.

Thus it appears that if we calculate the results of these operations by substitut-
ing the particular parts of the values of z, y, &c. which depend on the root m of
the equation A (3)=0, the results will be general, i.e., will be the same as if we had
substituted the complete values of z, y, &e.

Without using any further rule, therefore, we may find the a constants which
depend on the repeated root p=m by substituting in these a operators the particular
terms in z, y, &c. which contain the exponential ™. Thus we obtain a expressions
for the operators which contain the a constants. At the same time the values of
the operators themselves may be found by giving the variables z, y, &o. their initial
values.

This, however, requires that we should use all the co-ordinates, but if we wish to
find the values of the constants which oceur in one co-ordinate only, we may use
the results of the following theorem.

870. It is required to find in terms of the initial conditions the values of the
constants which enter into the expression for any one of the co-ordinates when the
Jundamental determinant A (p) has a roots each equal to m.

In this case the value of # will contain powers of ¢, but how many will depend
on whether the minors of the determinant A (3) are zero or not. Since, however
the highest power of ¢ cannot exceed a — 1 we may take as the general value of =

L‘(’::ll) t"'l) e+ ENter,

where the terms included in the 2 stand for those portions of the value of  which
do not depend on the root m and L(a—1)=1.2.8...(a~1). There will be
similar expressions for y, £, &o. also containing powers of ¢ not higher than the
(a-1)*, but it will be unnecessary to write these down.

‘We now proceed to differentiate equation (1) of Art. 368 r times with regard
to p, and after substitution for z, y, &c., we will search for the terms containing
t*e™ where r and x are any integers we may find convenient to use, The r* differ-
ential coefficient is clearly

darx A(p)P @
dpsp) + & d;e) = @CG" ........................... (Il),

a:=(M., +M1C + ...+

where P=er [l ot

‘We notice that the first of the two terms on the left-hand side is & linear
function of z, y, &c. and their differential coefficients with regard to ¢, Henoe no
term of the form searched for ean enter unless with powers of ¢ less than a. If
then we restrict ourselves to values of « greater than a—1, we may pay no further
attention to this term.

The second term on the left-hand side of (II) may by Leibnitz's theorem be

L(r) ap &P
T@Le—a2® P
In this series all the differential coefficients of A (p) below the a** have been omitted
because the equation A (p) =0 has been supposed to have a roots each equal to m,

written A'(p)P+rA'°1(p)g§+...+

e\
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If we substitute in the expression for P any such term as Nt‘e* we find after
integration only one term which is free from the exponential e#, and this one term
is of the form He*, Hence d'P/dp* contains no power of t higher than the s*.
In this series therefore, when we put p=m and search for the terms of the
form t®e™, if we restrict ourselves to values of x greater than r — a, we may pay no
further attention to such terms as Nt'er,

‘We have next to find the value of d'P[dp’ when we substitute for z any term of

the form 73, ( 1) t*"le™  Now whatever z may be we have

d‘P a 1 Ls 1
o e = ~pt
=3 - 5% 0o G- =Lser 3~ (e Ha),
where Ls=1.2. 3 .8 as usual. Substituting for z and writing p=m, we may
effect the integrations represented by &—* without difficulty. The exponential
dP_ Ls
dp' ~ L(x+s)
No correction is necessary to the integration since this vanishes with ¢.
Supposing then x to be greater than both a-1 and r - a we find for the coeffi-

cient of *e™ on the lefi-hand side of the equation (II)

%‘ {A'(m) M.-1+rA'-1(m)M‘-'g+'(1’—f;~)Af-”(m) M‘_g+&o.} ;

Lr &g
I (=8 g«

disappears and we find at once T M e,

On the right-hand side we find the coefficient of t“e™ to be

Equ#tmg these two we have
A" (m) A" (m) A% (m) 1 a=¢
T My-1+ L(T 1) My-2 Ta Mx—r+¢—l—m d————mf"‘.

The letter C stands for the initial value of II (m), it will therefore be more conve-
nient to replace it by the latter symbol, with the understanding that all the co-
ordinates have their initial values.

Since x must be greater than a—1 and Ma=0, the only useful value of « is
x=a. Since x must be greater than r-a, the only possible values of r are r=a,
a+1,...2a -1, Writing these in succession for r, we obtain

2 Macr=T1(m),

Ia
L‘?::ll)M“’l"'z— He-g=T 00,
LA(::;) M°'1+LA(::_11) Ma-z+%‘ Ma_g= 1_1'_2 d_"ll‘;,f,"'i),
&e.=&o.
ﬁ:;—-_l-l—)m-1+&c.+L(a+1)Ml+ﬁaMo L(: . d%';tuﬂ_g_’"_).

‘We have here just the right number of equations to find the a arbitrary con-
stants which occur in the value of # without requiring the corresponding values of
the other co-ordinates.

If all the first minors of the determinant A (8) have g roots equal to m, the first
B operators on the right-hand side vanish whatever », y, &c. may be. In this case
therefore the coefficients Mg-1... My—p are all zero. Thus the expression for z
(as already explained in Art. 272) loses 8 of its highest powers of t.

In the same way we may find the constants which occur in y by using the
operator called II, in Art. 366 instead of II,
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371. Another form of the determinant. There is another
form in which the operator II(m) can be written and which is
particulatr}{ useful when the differential equations are of the
second order. Returning to the proof given in Art. 368, we see
that the determinant IT(p) may be written as the difference
between two determinants, the second of which is zero when
A(p)=0. Looking at the first determinant, we may divide all
the constituents of the first column by any power of & we please,
provided we finally multiply the determinant by the same power
of 8. But these constituents are the functions which form the
differential equations. We may therefore modify the rule given
in Art. 366 as follows. First divide the equations by any power of
& we please. Then form II(m) from these modified equations by
the same rule as before and finally multiply the constituents of
the first column by the same power of 8. If this modified operator
be called II’(m), we see that II(2) and II'(m) differ by some
multiple of A(m). If A(8)=0 have a roots each equal to m,
it follows that all the differential coefficients of II(m) and I1'(m2)
up to the (2 — 1)th are equal each to each.

372. Thus let the equations be
A4,8+B8+C)z+(4,8+BS+C)y= 0}
(4,8 + B840 )z + (4,8 + B8+ C)y=0
taking only two variables to shorten the results. We divide each

equation by J, then to form II(m) we divide by § — m and reject
the remainders. Finally we multiply again by é.- We thus have

l'I(m) = Aua‘” + AnSy — _Cllw—;:;cﬂ;y, Auml_'_ Bmm + 0“ .

A30+ 4,3y -03CeY gty B,

In this form the constituents of the first column (when the equa-
tions are of the second degree) may be written down by copying
them from the equation.

The advantage of this form is that the forces of resistance
which depend on the potential B (Art. 311) have disappeared
from the symbol II(m). It also leads to the method of multipliers
to be explained in the next section. '

878. ‘Ex. 1. Let the equations be
(3%-86+2)z+(3-1)y=0

~(@-1)z+(P-53+4) y=02 '

The fundamental determinant is
A(m)=|m3-3m+2 m-1 |=(m-1)(m-3).

—(m-1) m=-5m+4| .
The equation A (m)=0 has therefore two roots each equal to 3 and the ¢orresponding
terms in the value of z willbe  z=(M,+ M,t) e,
It is required to find M, and M, in terms of the initial values of the co-ordinates.
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‘We form the operator II (m) by the rule given in Art. 872, copying the.columns
from the equations given above

II (m) = Gz—gz":y,m—l =(m- 1){(.» G sz-y-m
- :c+4y

a:+yt

m’ Sm+4

This gives when m=3, I (m)=-2 {8z + 8y —z—y}, %:u—w-x+y.

Also when m=3 we have A (m)=0, A’'(m)=0, A” (m)=8, A" (m)=21. Hence by the
.. AM=-2(3x+dy—x—y)
rul 1
e given in Art, 370 4 (M, + M) =8z 3y—z+9} °
where the quantities on the right-hand side have their initial values.
(F'—?G)z-y=0§
(26-1)z+8%=0§"
Find the constants in z=(M,+ M, ¢+ M,t%) ¢'.
The result is 2M,=3+8y+x+y, 2M,+ M,=20z-z+y, 2My+ M, =8 +x.

Ex, 2. Let the equations be

374. The following examples illustrate the application of the preceding theorems
when the differential equation has but one dependent variable.

Ex. 1. The differential equation (3*-232-3+2)2=0 is satisfied by z=Me".
If the initial values of z, 3z, 3’z are a, a’, a”, prove that 34 =2a +a’ —a”.

Ex. 2. Let the differential equation be f(3)z=0 and let f (3) contain only even
powers of 5. If the terms of the solution depending on the pair of solitary roots
m==xky/-1 of f(m)=0 be z=F cos kt + G sin K, prove that

Fm_ S0 g G0 _ 1@ 2
3 Tm T #y R + B m B+kd k°

Ex. 3. Let 4,0"z+...+4,3x+ 4,2=0 be a differential equation. Representing
this by f () =0, let m be a real solitary root of f(8)=0, and let Me™ be the corre-
sponding term in the value of x. Prove thaf{ a superior limit to the value of
My’ (m) is the sum of those terms in the series 4,8" 1z +... + 4,3+ 4, which have

the same sign as f’'(m). Here of course z, 3z, &c. are all supposed to have their
known initial values.

875. The following examples indicate another method of investigating the
theorems of this section,

Ex. 1. Let the first minors of the determinant A(5) be represented by the
letter I, the suffix indicating the constituent of which it is the minor. If q be any
root of A (3)=0 we know that a solution of the differential equations is

z=GI, () e®, y=GIy(q) &, z=o.,
where G is an arbitrary constant. Let us however suppose that ¢ is unrestricted
in value and is not necessarily a root of A(3)=0. Prove that the result of the
substitution of these values of z, y, &c. in Il (p) is

10 (p) = Gert A@Iy(p)-Ap) Iy (q)
=P

where p also is unrestricted in valae.
This result may be proved by resolving II (p) into the difference between two
determinants as in Art, 868, and then substituting in each.
Ex. 2. Deduce from the last example that if p and ¢ be unequal solitary roots
of A(3)=0, then II (p)=0. But if p and ¢ be the same solitary root then
I (p)=GIy (p) &' (p) €™
R.D, IL ) 14
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Ex. 8. If the equation A (8)=0 have 8 roots each equal to g, the form of the
solution is indicated by z =G,y (g) e +... + Gp—-1 (d]dg)P~1 (L, (¢) e},
with similar expressions for the other co-ordinates. If the equation A (8)=0 have
also a roots each equal to p, prove that the result of the substitution of these
values of the co-ordinates in any one of the determinants II(p), (d/dp)II (p)...
(d/dp)*~111(p) is zero if p and g be unequal. If p and g be equal, we obtain the
results given in Art. 866.

This may be proved by using Leibnitz’s theorem to differentiate the equation of
Ex. 1, i times with regard to p, and j times with regard to g, where i is less than «
and j than 8.

Ex. 4. When all the first minors of A(3) vanieh for any particular value of 3,
the solution depends on a double type £, 9 so that x=J7,(3) £, y=J}4(8) » &e. where
J13(9) is the second minor of A (%) formed by omitting the first two rows and
columns as in Art. 273. Prove that if we write §=Ge, n=He*, where G and
H are two arbitrary constants which run through all the values of the other co-
ordinates, then

—a_ ¢ f|[I(p) Iu(!)l - } _g. |In (2), In(g)
T(n)=6G .5 { Lo, Il T2 @2 @O ~Ho L (), L)’
Here p and g are unrestricted in value and do not necessarily satisfy A (3)=0.

Ex. 5. Deduce from the result of Ex. 4, that if A (3) have two roots each equal
to m one of which makes all the first minors zero, so that z=Me™, y=Ne¢™ are
parts of the solution where M, N are independent constants, then

A M=0, A mN=TD,
where IT, is obtained from A (m) by erasing the second column instead of the first
(see Art. 366). Here the co-ordinates on the right-hand side are supposed to have
their initial values.

Ex. 6. Let the equation A (3) =0 have « roots each equal to m, and let all the
first minors have 8 roots also equal tom. Let us form from II (m) a new determi-
nant IT' (m) by omitting any row we please and any column except the first. Prove
that it we substitute in the determinants (d/dm) II'(m), &c. (d/dm)’ 1 II'(m) any
values of the co-ordinates which satisfy the differential equations and which do not
involve the exponential ™, the results are all zero. ’

Method of Multipliers.

376. In the last section we showed how the constant belonging
to any one oscillation could be determined when the differential
equations were of any order. We now propose to consider what
simplifications can be made in the rule when the differential
. equations are of the second order and of that simpler kind which
usually occurs in dynamics.

Referring to Art. 310, we find the equations of the second
order written at length. But forms so general as these seldom
make their appearance. The two most important problems which
occur in dynamics are those in which we have—

(1) Oscillations about a position of equilibrium, whether with
forces of resistance or not,
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(2) Oscillations about a state of steady motion.

In the first of these cases the terms depending on D, E, F are
absent from the equations so that the fundamental determinant is
therefore symmetrical. In the second the terms depending on
D and F are absent, but those depending on the centrifugal forces
E are present. In this case the forces of resistance B are generally
absent.

377. We may therefore simplify these equations of motion
and write them in the form

(4,8 +B,5+C)z+ (A,,S’ i %:; + 0,.) 9+ &c.=0,

(AHS'-'- g"g-'- 0") z+ (An8’+ an + 022) y + &c' = O’
T

&e. + & . + &e.=0.

The solution of these equations has been already expressed in
Arts. 313 and 317 in the following forms. If m,, m, &c. be
real roots of the fundamental determinant, we have

=z +agm + &) do/dt=x'¢e™ +x/e™ + &e.
Y=y ™+ y,emt + &e. } dyldt=y, e™t + y /e’ + &c. }
&c. = &e. &c. = &e. :
Here z,, Y % &e., x/,y,, &c. contain as a common factor one
constant of 1ntegration, x,, v,, &c., #,, y,, &c. another constant and

’ 4
so on. Also 2/ =am,, y/=y,m, and so on.

378. If there be a pair of imaginary roots in the fundamental
determinant of the form m =7r+py—1, m=7r—ps—1, the
preceding solution takes the form

=X ¢" cos pt + X ¢" sin pt + xe™* + &c.
y =Y, e" cos pt + Y,¢" sin pt + y,e™* + &ec.
&e. = &e. )
dx/dt = X" cos pt + X, " sin pt + z,/e™ + &c.
dy/dt =Y ,e" cospt+ Y e” sin pt + y, e™* + &c.
&e. = &e.
where X, ==z, +a,, X,=(x,—x)y-1 and X/'=rX +pX,
X =- pi’, +7X,. There are of course similar expressions for
the Y’s, &e. Here we notice that all the coefficients in the first
two columns are linear functions of two constants of integration,

the coefficients of the third column are multiples of a third
constant and so on.

379. If we examine the form of the solution given in the
last article we see that the columns are arranged according.to
the roots of the fundamental determinant. Each column contains

14—2
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one or two arbitrary constants which have to be determined from
the initial values of z, y, &c. If the whole solution be known
we may therefore find the constants by common algebra, though
if there be many unknown constants the process may be very
long. But if the whole solution be not known the processes of
common algebra fail.

380. Thus suppose we have found only one root of the funda-
mental determinant, then we know the terms which occur in one
column only. The other columns depend on the other roots
which have not yet been investigated. We may yet wish to find
the value of the constant which occurs in this column in terms of
the initial values of the variables. We should then be able to
find the magnitude of any one oscillation without finding the others.

To effect this we use the method of multipliers, our object is to
find some multipliers for the equations which express the values
of z, y, &c., dz/dt, dy/dt, &c. such that on adding together the
products all the columns will disappear except the one we wish
to retain. Supposing this done we have one equation containing
the constant to be found and the initial values of z, y, &c. This
equation will be sufficient to determine the value of the constant.

There is this point of difference between the method of isolation and that of
multipliers. In the former we find the constant connected with any one term in
any column without caring for the other terms in that or any other column. In
the latter we require to use all the terms in that column to find the one constant.
In the former method we isolate any one term, in the latter we isolate any one
column, ’

881. The proper multipliers may be dsduced from the determinant II (m).
Taking the form given in Art, 371 as the best adapted for equations of the second
order, we have by expansion

II (m) = Pz + Qy + &c. + P'éz + Q'5y + &e., :
where P, Q, &o. stand for the coefficients in the expanded determinant. Now it has
been proved in Art. 869 that II (m) is zero when we write for z, y, &c., the terms of
any column of the solution in Art, 877 depending on a root other than m. It
follows at once that the proper multipliers to separate the column depending on the
root m fromn the other columns are P, Q, &e., P’, Q’, &c.

These multipliers are really determinants, and when there are many co-ordinates
it may be very troublesome to calculate their values. The coefficients of the
column which is to be separated from the others are also determinants. Both these
sets of determinants are connected with the minors of the fundamental determi-
nant ; the former with the minors of some column, the latter with the minors of
some row. When the differential equations are of the simpler kind which oceurs
in dynamics, (Art. 877) the fundamental determinant has a certain symmetry
about the leading diagonal. In this case the two sets of determinants are con-
nected together so that the required multipliers can be expressed as some simple
function of the coefficients of the column we wish to separate,

Instead of making the transformation from one set of determinants to the other,
it will be simpler to adopt an independent mode of proof. The required multipliers
follow at once from the two equations which have been made the foundation of the
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theorems in the first section of Chap. vi. (see Art. 816). As the equations now
under consideration are simpler than those treated of in the section just referred
to, the proofs of these two theorems will be briefly summed up in the next article.
The definitions of the functions 4, B, C (Art. 311) will also be adapted to the
special use which we now intend {o make of them.

382, If we substitute the terms in the first column of the
expressions for z, y, &c. given in Art. 377 in the differential
equations we obtain a set of equations which differs from the
differential equations only in having m, written for & and «,,
Yy, &c. for z,y, &c. First multiply these respectively by «,, ¥,, &c.
and add the results together, the sum may be briefly written,

A (z,x) m*+ B (x,2,) m, + C(z,z,)=0.
Next, multiply these respectively by «,, ,, &c. and add the results
together. The sum may be briefly written
A (z,x) m®+ B(x,x)m + C (z,x) =E (z,9,) m,.
The functional symbols 4, B, C when not followed by the

subject of the functions all represent functions of the co-ordinates
x, y, 2, &c. which have been defined in Art. 311. Thus

A=34, 5+ A 0y+3 4.9+ ...,
B=3}B,s'+ Bxy+iB,y'+ ...,
C=302+Cazy+3Cuy’ +....
When the differential equations are given the following rule
to find 4, B, C will be useful :—Multiply the equations by x,
Y, 2z, &c. and add the products, treating the operator & as an al-
gebraic factor. The halves of the coefficients of the powers of & are
the functions A, B, C.
When we wish to substitute for the variables z, y, 2, &c. any
quantities we affix as usual those quantities to the functional
symbol and write

A@m)=34,2+ 4,29, + 3497+ ...,
with similar expressions for B(z,x,) and C(z,2,).
We then generalize these expressions and for the sake of brevity
write
4 (xlwa) = ‘}Auwl‘zx + %An (wlyi + wiyl) + %Anyxya LT

383. Prop. A.—To determine the multipliers when the funda-
mental determinant 13 symmetrical and the forces of resistance not
absent.

Let m,m, be any two roots of this determinant. Then, by
Art. (382), since the terms depending on E are absent, '

A (z,x) m®+ B (z,x) m + C (z,z,) = 0}

A (z,z,) m'+ B (z,x) m, + C(z,x,) =0 (1),
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Eliminating B and C in turn from these equations, we have
A (z,z) mm,= C(zz,) yMWMJm
— A (z,x,) (m, +m,)) = B (z,z) ’
except when m, and m, are the same root.

Either of these equations may be used to find the required
multipliers. We thus find two sets of multipliers. We shall
choose the first equation, as giving the simpler results.

If there be a pair of imaginary roots in the fundamental de-
terminant, say ml=r+p~/fl,m =r—p./ —1, and if m, be any
other root, the first of equations (2) gives

A@@“+PJ‘”W=C@@} ............ @).
4 (‘”swa) (r— p V= 1) m, = c (xawa) |
Remembering that 4 and C are linear functions, we see that
these give by addition and subtraction
A (X/z) m,=C(X 1"’;)}
4 (X,/z) m,=C(Xz,)
where X, X, X, X' have the meaning given to them in Art. 378.
The function 4 (z,2,) may obviously be deduced from the
potential 4 (z,2,) by the process
dA (z,x dA (z,x
24 (wlz,)=w,—d—(w:—‘)+y,—j(y—:—‘-)+... |
where of course 4 (z,,) (Art. 382) represents the value of 4 (zx), |
or A when z,, y,, &c. have been written for z, y, &c. The functions
B and C may be treated in a similar manner.

We may now immediately deduce the proper multipliers.

Taking the solutions written down in Art. 377, let us multiply
the expressions for «, y, &c. by — dC/dx, —dC/dy, &c., after writing
z,, ¥,, &c. in these multipliers for @, y, &c.; also let us multiply
the “expressions for dz/dt, &c. by dA/dz, &ec., after writing z,
y/, &c., for z, y, &c., in these multipliers. Finally, let us add
the products ; then, by virtue of the first of equations (2), the sum
of every column except the first is zero. .

If we have imaginary roots in the fundamental determinant,
we take the solution given in Art. 378. Treating it in the same
way, we see by equations (4) that all the columns disappear except
the two first.  Repeating the process for the second column, we
again find that all the columns except the two first disappear.

384. The rule may be summed up as follows:—

Let the fundamental determinant be symmetrical, and the
forces of resistance not absent. Let it be required to separate
by the method of multipliers any given column from the others.
The proper multipliers for the co-ordinates are the values of dC/dx,
dC/dy, &c., after we have substituted for x, y, &c., n these mul-
tipliers the corresponding coefficients in the column we wish to
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preserve. The proper multipliers for the velocities are the values of
—dA/dx, —dA/dy, &c., after we have substituted for x, y, &c. in
these multipliers the correspondmg coefficients in the column of
velocities we wish to preserve. Finally, we add the products
together.

In this way we can find an equation connecting the initial
values of the co-ordinates with the constant which accompanies
any one column. Since these initial values are arbitrary, neither
side of this equation can wholly vanish unless all the multipliers
themselves vanish. Hence the coefficient of the exponential on
the right-hand side cannot be zero, except in this one case.

The multipliers cannot all vanish unless the quadric functions
C and A also vanish for some finite values of the co-ordinates. In
dynamics the function A is such a function of the co-ordinates as
the vis viva is of the velocities. It is therefore impossible that A
could vanish for any finite values of the co-ordinates.

885. Example. Let us consider the equations
(BP+5+1)z+3(6-3)y=0
3@-Hz+(-0+3y=0)"
Ii is easily seen that the determinant of the solution reduces to m4 - #;=0.
We therefore have, if m now stand for § /5,
=2, e™ + 26~ + Xyco8 mt + X, sin mt|
Y=y, 6% +yse ™+ Y 008 mt+ Y‘sinmt} ’
dr|dt=max, e™ —mx, e™ + mX, cos mt — mX, sin mt
dy/dt=my, e™ - myy e~™ +mY, cos mt — mY, sin mt} )
Also multiplying the equations by z and y, and taking the halves of the coefficients
of the powers of 3, we have
4=%(=+y%), C=32*-Jry+ 3>
Suppose we wish to find the coefficients ;, y, in terms of the initial conditions.
Following the rule, we multiply = and y by the differential coefficients of C after we
have written z;, y, for , ¥ in the multipliers. "We multiply the velocities by minus
the differential coefficients of 4, writing in the multipliers mz, and my, for x and y.
Finally, we add the results, Thus we have -

: (:1:6 ) -:.i.;( Tt iyl)} {”1 — 3z, + 1y } o™,
= G™ g ™ m? (o +9,%)

Putting t=0, and giving z, y and their velocities their known initial values, we
have one equation to find the constants z,, y,. Their ratio,

v mi4m+l
5= 3m-p  "IVE
being known from the first equation, we easily find both z, and y;.

If we wish to find the coefficients of the trigonometrical terms, we use two sets
of multipliers, because the two imaginary exponentials have become mixzed up to-
gether in the trigonometrical term; or we may replace them by their imaginary
exponentials, and find the coefficients of either by one set of multipliers. Taking
the first alternative, one set of multipliers will be respectively

X3-3Y; -§X,+4Yp -mX, -mY,

The other set will be

X, -3Y, -32X,+1Y,, 4mX, +mY,
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386. Pror. B.—To determine the multipliers when the funda-
db;mmtal determinant s symmetrical and the forces of resistance

ent.

This proposition is really included in the last. But as the
absence of the function B introduces great simplification, it is
worth while to consider this case separately.

Since the forces of resistance are absent, none but even powers
of & enter into the equations. Hence for every root of the funda-
mental determinant there is another equal in magnitude but con-
trary in sign. If 4 and C are one-signed functions, and have the
same sign, these roots are of the form +ps/—1. Choosing this
as the type, we may write the equations of Art. 378 in the form

z=X, cos pt + X, sin pt + z,e™ + ...
. &e.= &e,,
e da/dt = X, cos pt + X, sin pt + 2,¢™ + ...
&e. = &e.
Here, unless there be equal roots, we have
'E’;-_—EF&O.:_X—X'::ZIY’_":&C_ =£[,

1 - 2 2
because the ratios of the coeicients of any exponential are ex-
pressed by the minors of the fundemental determinant, and these,
containing only even powers of m, aréthe same when the exponents
are equal in magnitude but contraryﬁeign.

Here H will stand for the constant 1t the second column on
the right-hand side of the equations, the constant in the first
column being included as a factor in X,, ¥, &c., X}, ¥, &e.

Since the function B is zero, the equations (2) of Art. 383
reduce to A (zgz) =0, C (zx,) =9,
except when m, =+ m,. For a pair of imajinary roots such as
m=r+pJ=1, m;=r—p J—1, combined with a third root m,,
we have (exactly as in that article)

4 Xz,)= 0} C (Xz,) =X
A(Xg)=0f" C(Xz)=0}"

387. We may use either the function A4 or the fund.imkgg)

supply the proper multipliers. We thus find two sets of multiplees. J

Which we should choose depends on the forms of 4 and C.

If either of these functions contain only the squares of the
co-ordinates, i.e. if it be of the form

ar’+ by + e’ + ...,

it is clear that its differential coefficients will be much simpler
than if the terms containing the products of the co-ordinates
were also present. The multipliers are indicated by these dif-
ferential coefficients, and will therefore also be simpler. That

|

I
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function is therefore to be chosen which has the fewest terms
containing the products of the co-ordinates.

Choosing the function A4, we have the following rule to find
the multipliers. Let it be required to separate from the others
any particular oscillation—say the two columns containing the
phase pt. The proper multipliers for the co-ordinates x, y, &c. are

the values of %%, %% , &c., after we have substituted for x, y, &c.
in these multipliers the coefficients of either of the columns contain-
ing the phase pt. Adding these products, we have one equation
Jrom whuch all the oscillations except the one to be preserved have
disappeared. The same multipliers may now be used for the velo-
cities, and thus by a second addition we obtain another equation of
the same kind.

The two equations thus obtained may be written thus:— :

a4 0(5 o) 4 .= 24 (X X,) (cos pt + Hsin pt),
1
dz d4 (XX '
e __;X,_L) +&c. =24 (X,X,) (Hp cos pt — p sin pt).

1
Putting ¢ =0 either before or after using the multipliers, we
have two equations to determine H and the other constant in-

cluded in X, Y, &c.

388. A rule to find the functions 4 and C when the differential
equations are known has already been given in Art. 382. But
in using Lagrange’s method it 1s sometimes more convenient to
refer to the expression for the Vis Viva and the Force Function
from which these equations have been derived. Referring to
Vol. 1. we see that the Vis Viva is

2T =A,2"+ 24,2y +...
Thus the function A is derived from 7' by merely dropping the
accents from the co-ordinates. The function C is of course the
same as the function U,— U as defined in Vol. 1.

389. Prop. C.—To determine the multipliers when the forces of
resistance are absent but the determinant s skewed by the centrifugal
forces.

Referring to the equations of motion in Art. 377, we form the
determinant which we have called the fundamental determinant.
It is unnecessary to write this determinant, as its form is evident
from the merest inspection of the equations. It is also given at
length in Art. 112.

If in this determinant we write — & for §, the rows of the new
determinant are the same as the columns of the old, so that the
determinant is unaltered. When expanded, the determinant will
contain only even powers of &, and therefore its roots enter in
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irs. We shall therefore take as our standard form of solution,
nstead of that in Art. 378, the expressions

z =X cos pt + X, sin pt + z,e™ + ...
y=Y, cospt+ Y,sinpt+y,e™ ... 00000enen Q;
&e. = &e.

dy/dt= Y, cos pt+ Y, sin pt + y,'¢™* + ...
&e. = &e.

Here the first two columns represent the most common form
of a principal oscillation, and the third column represents any
other form. When the centrifugal forces (i.e. the terms depending
on E) are present, the minors of the fundamental determinant do
not contain only even powers of 8. It follows that the coefficients
in the second column do not necessarily bear a uniform ratio to
those in the first column.

Since the function B is absent, we have by Art, 382, the equa-

dx/dt = X, cos pt + X sin pt + z,'¢™ + .. }

. 1
tions A(zz)m, + C(zz,) pi E (z,y)
L 3).
1
4 (wxwa)ma + C(‘”x‘”a) m. =—E (w, y,)
2
Adding these to eliminate the functional symbol £, we find
A @z)mm + C(xx,)=0...ccuvvenennnn.. (4),
except when m, = —m,.
‘We notice also, that by Art. 382,
4 (o) m?+ C (o) =0 (%)
A (zg) me+ Cagg) = 0f 7w .

. We might also eliminate the function 4 or C from the equations
(8) instead of the function E, and in each case we may deduce a
rule to find the multipliers; but the simplest rule is found by
eliminating the function .

The formula (4) resembles that used in Art. 383, and there
called (2), except in the sign of 4. Proceeding therefore exactly
as in that article, we shall deduce the corresponding rule for the
multipliers.

Instead of equations (3) of Art. 383, we now have (since r=0)

A (wlxs) P "/—:Ima +C (xixs) = 0}

-4 (xsxs) p J'__—lma + C(wsws) =0
Remembering that 4 and C are linear functions of the letters of
any one suffix, these give by addition and subtraction

AX/ z)m,+C(Xz,)=0
4 (Xa,"”a) my+ Y (szs) = O}
where asbefore X=2,+1,, X,=(2,—z,)J/~ 1, X/=pX,, X, =—pX,.
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Also writing m,=pJ—1, m;=—pJ—1 in equations (5), we
find by subtraction
A (X;X,’) +0 (X, X)=0.ceeurrrinnnnnn. (8)-

390. From these formule we now deduce the following rule
to find the multipliers.

Let the forces of resistance be absent, and let the fundamental
determinant be skewed by the centrifugal forces only. Let it be
required to separate any principal oscillation from the others.
Selecting one of the two columns which form the oscillation, the
proper multipliers for the co-ordinates x,y, &c. are the values of

g—g, %? , &e., after we have substituted for x,y, &c. in these multi-
pliers the corresponding coefficients tn the column selected. The
proper multipliers for the velocities are the values of (31—-1:, (;;; , &,
after we have substituted for x,y, &c. in these multipliers the co-
efficients corresponding to these velocities in the column selected.
Finally, we add all these products together. We then repeat the
process with the coefficients of the other of the two columns which
Jorm the oscillation.

By virtue of equations (5) and (8) it will be found that in each
of these processes every column exzcept one will disappear from the
final summation. But we may notice a curious difference between
the columns which contain real exponentials and those which con-
tain trigonometrical expressions. If we operate with the coeffi-
cients of one of the former introduced into the multipliers, it is
the companion column which does not disappear; but if we operate
with the coefficients of one of the latter, it is the column whose
coefficients we have used which does not disappear.

391. Example. Let us consider the equations
(B-8)z+ \/661/:0}
—A/68z+(32+2)y=0 ¢
It is easily seen that the fundamental determinant reduces to mé—16=0. Hence
we have z=X, cos 2t + X, sin 2t+zac”+a:‘e"'§
y=Y,co82t+ ¥,sin 2t +yge¥+y, %)’
dx|dt=2X;cos 2t — 2X, sin 2¢ + 2uy €* — 2x e~ %) |
dy/dt=2Y, cos 2t — 2 sin 2t + 2y, % - 2y, e~¥) ’
where ;= /6y, Y, =-6X,
22y=—+/6y,)’ Y,= 6X,)°
Also multiplying the equations (Art. 382) by z, 9, adding and taking the halves of
the coefficients of the powers of 3,
4=3@+y), C=}(-8'+2%").
The proper multipliers are indicated (Art. 390) by the formula
440, dC drdd dyad
dz dy " dt dz " dt dy
Now j—f=- 8z, ‘%’:2;,, %:x, %:y.
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Having chosen the column whose coefficients are to be used in the multipliers, we
see by Art. 890 that the proper multiplier for the first equation is minus eight times
the coefficient of the column in that equation ; the proper multiplier for the second
equation is twice the coefficient in that equation; the proper multipliers for the
third and fourth equations are the coefficients themselves in those equations.

Suppose first we wish to find x, and y,, then, because the fourth column con-
tains a real exponential, we operate with the coefficients of the companion column.
The multipliers are therefore

dac dac d4 d4
E="8’v ;ig=2yv d‘;=2¢s TI§=2'%'

Hence we find ~ 8y + 2y + 225 :—:+ 2y, :—i’: 16y,y.e7%;
substituting for z, in terms of y, and putting ¢t=0, we find
—dybotty+ V6 2% ey,
which determines y, in terms of the initial values of the co-ordinates and their
velocities,
Suppose next we wish to find X;, X,. Taking the coefficients of the first
column, the multipliers are 2o =-8X,, 2C=2¥, %4_sx, I4_oy,
t] dz 1 dy v gz 2 dy 2
Since these columns contain trigonometrical expressions, we know that when we
operate with the coefficients of either column in the multipliers, the other column
disappears, Hence, paying no attention to any column except the first, we have
—8X,2+2Y,y + 2X, dz/dt + 2Y, dy/dt =16 (X,*+ X,?) cos 2t ;
substituting for ¥; and ¥, and putting t=0, we find
-8X;2-24/6X,y +2X,dz|dt +2/6X, dy/dt=16 (X2 + X,?).
Operating in the same way with the coefficients of the second column, we have
~8Xx+2Y,y — 2X, da/dt — 2Y, dy[dt=16 (X,?+ X,?) sin 2¢ ;
substituting as before, we have .
~8X.z+24/6X,y - 2X, dz/dt +2/6X, dy/dt=0.
‘These equations determine X; and X, in terms of the initial values of z, y, and
their differential coefficients.

392. Pror. D.—To consider the effect of equal roots on the
rules already given.

When there are equal roots in the fundamental determinant,
we require only some slight modification of our rules. Referring
to the general solution exhibited in Art. 877, let us suppose, for
example, that there are three roots equal to m,. Regarding these
as the limits of the unequal roots, m,, m, + h, m, + k, we may write
that solution in the form

— myt ! d m,¢ d’ . myl myt
z=xe +G'd—m‘(w,e )+H(—l——(xle )tz e+ ...

2
ml

d

Y=y +G 3% @™+ H s @ie™) +9.67 oo
&c. = &e,,
dz ’ : ’ ’ ’ !
=% €™ + &% (/€™ + (% (/™) +z/e™ + ...
1 1

&e. = &e.;
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where z=am,, 2/ =azm,, &c., and @, H are the two constants
in addition to the one included in #,, ¥,, &ec.

Two questions now present themselves:—(1) When we use
certain multipliers to separate a column which depends on a
solitary root such as m,, will the columns which depend on other
equal roots such as m, (and therefore contain powers of ¢ as
factors) still disappear?

(2) What multipliers must we use to separate the three
columns which depend on the three equal roots from the re-
maining columns ?

393. Taking the first of these questions, suppose we wish
to separate the fourth column of the equations of Art. 392 from
the others. Let us use the same multipliers as if there were
no equal roots. It is obvious that, since the three first columns
disappear in the general case in which % and k& have any values,
these columns must also disappear when % and % are indefinitely
small. We therefore infer that any column which depends on a
solitary root may be separated by the same rules as before.

As an example, take the rule given in Prop. A, Art. 383. To
separate the fourth column, we multiply the equations by

dC (x,x,)/dx,, &c., —dA (z/z)/dz/, &c., \
and add the products. Since the three first columns must dis-
appear, we have C(xz)—4A (z/z))=0

dz, da/ )\
d’z, de )\ _

The last two of these equations also follow from the first by an
evident process.

394. Taking the second question, we wish to find what
multipliers will separate the three first columns from the others.
But these are supplied by the equations just written down.
Since m, is any other root, and .

dC dcC
20 (z,2,) i, x, + &, Yot oony
we have merely to use the multipliers indicated by the coefficients

of z,, y,, &c. in these equations. The rule may be enunciated as
follows :—

Multiply the equations by the proper factors for the first column,
treating x,, y,, &c., X/, v,, &c. as the coefficients, and add the
products.  We thus have one of the three required. equations. Mul-
tiply the equations by the proper factors for the second column as if

di, ﬂl‘— , &c., L,, &c. were the coefficients, and add the
dm,’ dm, > dm, -
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products. We thus obtain the second equation. Lastly, multiply
the equation,by/ the proper factors for the third column as i+f
2.
g—:ﬁ, de., g%;, &ec., were the coefficients, and add the products.
We thus havel, on the whole, three equations to find the three
constants which enter into the three first columns.
The proper factors just mentioned are those calculated from

the coefficients by the rules of Prop. A or Prop. C.

395. In some cases of equal roots it is known that some of
the terms with ¢ as a factor fail to introduce themselves into the
solution. The number of constants is then made up by a greater
indeterminateness in the coefficients which accompany the ex-
ponential. Regarding these equal roots as the limits of unequal
roots, as in Art. 893, it follows that we can still use the same rules
to find the multipliers. We arrange our solution in columns
with one constant in each column. Then using the proper mul-
tipliers, as described above, we can separate any solitary root
at once. To determine the constants which accompany the equal
roots, we shall require as many sets of multipliers as there are
columns with that root or its companion root.

896. Bxample. Let us consider the equations
(P-1)z+y+z=
z+(82-1)y+z=0%.
z+y+(8?-1)2=0

It is easily seen that the fundamental determinant reduces to (m?-2)*(m3+1)=0.
Putting a=4/2, we write the solution in the form
z= Ee® 4+ Ge=ot +Ksint+Lcos
y= +Fe® +Hc“‘+Ksint+Lcos§,
z=-Ee® - Fe® - Ge~* - He~*+ K sin t+ L cos
where E, F, G, H, K, L are the six constants to be determined.
Looking at the equations to be solved, we see that the potential functions 4 an
C are given by :
20= —x’—y’—z’+%y+2yz+2m%
24= 234y04+22 '
Following the rule indicated in Art, 387, we choose the function 4 to operate with,
because this function will supply the simplest multipliers. The proper multipliers
will therefore be ddldx=z, dA|dy=y, dA|dz=:z,
where we write for z, 9, z the coefficients of the column under consideration. The
proper multipliers are therefore the coefficients of the columns in succession.
Suppose we wish to find X and L. The coefficients in either of these two
columns are all equal. The multipliers are therefore equal. 'We therefore obtain,
by adding the equations and putting ¢t =0,
z+y+2=3L.
Treating the differential coefficients in the same way (Art. 387), we have
8z 40y + 8z=3K.
If we wish to find the four constants E, F, G, H which are all connected with
the companion roots +a, we must find four equations. According to the rule, the
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multipliers are the coefficients of the several columns. We thus obtain, when t=0,
Ez+0y—Ez=E (2E+2G+F+H)
0z + Fy—Fz=F (E+ G+2F+2H)}’
Ejz+03y —~ Edz=Ea (2E -2G + F- H)) .
03z + Fdy — F3z=Fa (E-G+2F-2H)}"
This simple and obvious example sufficiently illustrates the method of proceed-
ing when the proper multipliers could not be otherwise found.

897. Ex. If the differential equations are such that the fundamental deter-
minant is symmetrical about the leading diagonal whether the forces of resistance
be present or not, we have by Art. 262, x/I}; (m,)=y,/L;, (m;)=&e.=G, where G is
an arbitrary constant. There will be similar equations for the other roots of the
fundamental determinant. Thence show that the operator II(m) on expansion
takes the form

_d4 (@x), | d4 (z) _1dC(zp) 140 ()

G (m)= dz, oz + ay, 8y + &e. ™ da, x m dg,

Thence deduce the forms of the multipliers given in Prop. 4, Art. 383.

y -~ &o.

Fourier's Rule.

398. Of the two important problems which occur in dynamics
(Art. 376) the most common is that in which the system is oscil-
lating about a position of equilibrium free from any forces of
resistance. This of course is Lagrange’s problem and the solution
has been discussed in Chapter 11.

It often happens that the co-ordinates chosen are such that
the vis viva 27" can be written in the form

T=a*+9y*+...
without any terms containing the products of the velocities. In
other cases when the vis viva contains products, it may happen
that the force function U can be written in the form
2U=a"+y*+ ...
without any terms containing the products of the co-ordinates.

In either of these two cases if we follow the same line of argu-
ment as in Art. 386 we arrive at a simple rule. Taking the first
case, Lagrange’s equations are

Fr+C,z+Cy+...=0
Fy+C,2+Cy+...=0p ceviveinninnn, ).
&e.=0
As in Art. 386 the solutions of these may be written in the form
z=X cos pt + X, sin pt + X, cos gt + X, sin gt + &c.} @)
y=Y, cospt+ Y, sin pt + Y, cos gt + ¥, sin gt + &e.) "
&e. = &e.

Since the equations (1) are analytically satisfied by the values of
z,y, &c. expressed by any one column, let us substitute for «, y, &c.



224 DETERMINATION OF THE CONSTANTS OF INTEGRATION.

the terms in the first column and multiply the resulting equations
by X,, Y,, &c. respectively. Adding these results we find after
division by cos pt,

PrPEX,+YY,+..)=CXX,+C,(XY,+X,7,)+ &
Since the nght-ha.nd side is a symmetrlca.l function of the co-
efficients of the first and third columns, we have

P‘ (ans + &c) = Q’ (Xle + &e.).
It immediately follows that unless p= + ¢ we must have

XX, 4+ VY, +&.=0ucrereerrrrrrneens (3).

An exactly similar proof apphes in the case in which the products
are absent from the force function,

In either of these cases any column, say the first, may be
separated by using as multipliers the coefficients X, Y &e. of
that column. Thus we have, giving the co-ordinates z, ¥, &c. their
initial values,

fl::X +ZtK+&c.=p(X,’+Y,’+&c.)

These equations lead to a rule to find the coefficient which
when applied to some problems in heat or sound is usually called
Fourier's Rule. This may be stated as follows. Multiply each
co-ordinate by the coefficient of the cosine in the column we wish to
separate and add the results together. AIll the other columns will
disappear from this sum, leaving one equation to find the constant
of integration which accompanies that cosine.

To find the constant of integration which accompanies the sine
which occurs in any column, we differentiate the co-ordinates and
thus turn sines into cosines. Repeating the same process as before
we have an equation to find the constant. These rules are simple
corollaries from that given in Art. 387.

399. It sometimes happens that the vis viva 27 can be written
in the form

2X, +y¥,+ &e.= X1+ V2 + &e. }

2T =ma” +my"+..

where m_, m,, &c. are the constants connected with the co-ordinates
z, ¥, &c." In such a case the rule requires only a slight modifica-
tion. By the same reasoning as before, we show that

mXX +mY Y +..=0

Thus the multipliers necessary to separate the first column of the
values of z, y, &c. from the other columns are m X,, m,Y,, &c.
It will often happen that the coefficients m,, m,, &c. are the masses
of some particles connected with the co-ordinates z, Yy, &. Using
this phraseology we have the following rule. To separate any
column we multiply the co-ordinates of the several particles ds before
by the coefficients wn that column and by the masses of the several

particles.  We then add these results and proceed as before.
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400. The investigation we have here given of Fourier’s rule
is purely analytical. All we have assumed is that the values of
#, y, &c. satisfy certain differential equations. But we may also
give a physical meaning to the process and show that we have
really been using the principle of Virtual Velocities.

It has been shown in the first volume that that general prin-
ciple may be analytically represented by the equation

(LAT_dUye (44T U)o,

dt dx’ dx ditdy dy

where £, 7, &c. are any small arbitrary variations of the co-ordinates
z, 3y, &c. consistent with the geometrical conditions.

Let us suppose the system to be performing any principal
oscillation, say the one represented by the first column in the
values of z, y, &. Let us take as the arbitrary variation of the
co-ordinates, a displacement along any other principal oscillation,
say the one represented by the third column in the expressions
for @, y, &. This variation is consistent with the geometrical
conditions since the two oscillations might coexist in the same
motion.

In this case £ 75, &c. are preportional to X,, ¥,, &c. After
substituting for z, y, &e. their values as given by the terms in the
first column and dividing by cos pt, the equation becomes

—P’ (X1Xs + Yl Y; +.. ) = CnXlXa + Cli(Xle + XSYI) + &e.
Since the right-hand side is a symmetrical function of the co-
efficients of the first and third columns, we immediately have, as
before, XX, +Y Y +..=0,
except when p and ¢ are numerically equal.

Lagrange shows how to find the constants of integration in certain cases in
Sect. vi. of the second part of his Mécunique Analytique. Poisson devotes
Chapters vir. and vim. of his Théorie de la Chaleur to an explanation of the method
of expressing arbitrary functions in a series of sines and cosines. Another treat-
ment of Fourier’s rule is given in Arts. 93 and 94 of Lord Rayleigh’s Theory of
Sound.

The reader may consult two papers by the author on the several subjects dis-
cusged in this Chapter. The first is in No. 75 of the Quarterly Journal of Pure and
Applied Mathematics, 1883. The second may be found in the Proceedings of the
London Mathematical Society for the same year. The solutions also of many of
the examples given in this Chapter may be found in these two papers.

R. D. 1II. . : 15



'CHAPTER IX.

APPLICATIONS OF THE CALCULUS OF FINITE DIFFERENCES.

Solution of Problems.

401. In the first section of this chapter we propose, by the
consideration of some examples, to show how the Calculus of Finite
Differences may be applied to the solution of dynamical problems.
In the second section we shall examine a few remarkable points
in the theory of such oscillations.

The calculus of finite differences may be used when the system
contains a great many oscillatory bodies arranged in some order.
Perhaps there are so many that to write down all their equations
of motion individually would be impossible. If however there be
a sufficient amount of similarity between the motions of successive
bodies taken in order, it may be possible by writing down a few
equations of differences to include all the equations of motion.
To show how this can be done we shall begin with the following
problem. :

402. Ex. A string of length (n+1)1, and insensible mass,
stretched between two fized points with a force T, is loaded at
intervals 1 with n equal masses m not under the influence of gravity
and 18 slightly disturbed ; if T/lm = ¢ prove that the periodic times
of the simple transversal vibrations which in general coexist are
,gtvein gy 3t.he Sormula (w/c) cosec im/2 (n+ 1) on puiting in succession
1i=1,2, 3...n,

T T

4 1 Ys Y3

e

Let 4, B be the fixed points; y,, y,,...4, the ordinates at time
¢t of the n particles. The motion of the particles parallel to 4B
is of the second order, and hence the tensions of all the strings
must be equal, and in the small terms we may put this tension
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equal to 7. Consider the motion of the particle whose ordinate
is y,. The equation of motion* is '

d'yb Yer =Y T y_b:ly_l':l T;

m W = l
d'y,
7 C(Yen =2 F Ypy) coeeeemrnreeennns (1).

Now the motion of each particle is vibratory, we may therefore
expand y, in a series of the form

Y =3LSIn (P4 ®) ecevueirirreeennanrennnnns (2),

where % implies summation for all values of p.
As there may be a term of the argument pt in every y, let
L, L,... be their respective coefficients. Then substituting, we

2
have L,-2L+L, = Jcl, ) 7 (3).

To solve this linear equation of differences we follow the usual
rule. Putting L, = Aa*, where A and a are two constants, we get
after substitution and reduction a — 2+ 1/a =— (p/c)*, or

N/a—g/l&=]£~/§, and ~/a+—1— =i2{1 —(%3)’}%;

NVa C
o=t (2N, P
- va_i{l (20)} +2/-1
Let these roots be called a and 8, then
L ,=Ad*+ BB*

1s a solution, and since it contains two arbitrary constants it is the
general solution. _

The constants 4, B, a, 8 are the same for all the particles, but
not necessarily the same for all the trigonometrical terms defined
by the different values of p. When we wish to discuss the pro-
perties of any particular A and B we write as a suffix the letter p
by which they are distinguished.

* This equation might also be deduced from Lagrange’s general equations of
motion. If U be the force function, the position of equilibrium being the position

of reference, we have 2U=-— % 92— %‘ (Yg—y))?— &e.~ %' (Un— Yn-1)®— %‘ Yn2

The vis viva is evidently my, "t +my,?+ ..+ my,2
Substituting these in Lagrange’s equations of motion we obtain the equations
represented by (1).

This problem is discussed by Lagrange in his Mécanique Analytique. He
deduces the solution from his own equations of motion. He also determines the
oscillations of an inextensible string charged with any number of weights and
suspended by both ends or by one only. Though several solutions of these
problems had been given before his time, he considers that they were all more or
less incomplete. '

15—2
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The term distinguished by p=0 requires some further con-
sideration. In this term the two values of a viz. a and B are
each equal to unity, and the solution of equation (3) loses one of
its arbitrary constants. But this defect is easily cured by follow-
ing the usual rules for treating equations of differences. We
have in that case L,=A,+Bk.

The term distinguished by p=2¢ also presents some pecu-
liarity. In this term the two values of a are each equal to —1.
We have therefore

L= (4,+ B (-1},

Summing up, the solution of equation (1) may be written

at length

Yo= A, + Bje+ (A, + B,R)(~ 1) sin (20t + 0,)
+3(A,a'+ BBY)sin (pt+®,) cevueivrneninnnnnnin(4),

where the = implies summation for all existing values of p. We
know from the theory of equations of differences that the first
four terms in this expression are really included in the last as
the limiting case of the terms distinguished by p=0 and p=2c.
Unless therefore we wish to call attention to these terms, they may
be omitted in the expression for y,.

403. The equation (1) represents the motion of every particle
except the first and last. In order that it may represent these
also it is necessary to suppose that y, and v,,, are both zero
though there are no particles corresponding to the values of &
equal to 0 and n +1. With this understanding the solution (4)
will represent the motion of every particle from i= 1tok=n.

404, Since y=0 when k=0 for all values of ¢ every term
in the series (4) must vanish; .. 4,=0, 4,=0 and 4,+ B,=0.
Also y=0 when k=n+1 for all values of ¢, .". B,=0, B, =0and
Aa+ BB =0. These equations give a*"' =", If p be
%}'ea.ter than 2¢ the ratio of a to B is real and different from unity.

ence we must have p less than 2¢. Let then
p/2¢=5in 6, .. a = cos 20 + sin 260 \/—1.
Hence by what has been proved before '
(cos 20 4 sin 26 4/— 1)*"* = (cos 20 — sin 280 /—-1)*";

S 8in2(m+1)0=0; .. 0=w/2(n+1),
and the complete period of any term is P =2w/p=mc/sin §. The
letter ¢ indicates any integer, but since p =2c¢sin 6, we see it
is necessary to consider only the integers from ¢ =1 to ¢ =n.

405. In forming the differential equation (1) we have sup-
posed the distance ! between any two successive particles to be
unaltered. This will practically be the case if y,— y,_, be small
compared with the distance /. This limitation however does not
prevent us from enquiring what would be the effect of reducing
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the masses of all the particles and placing them proportionally
closer, so that the total mass per umit of length is unaltered.
The restriction is that the inclinations of the strings must still
be sufficiently small. The interest of this change is that the
closer the particles are placed the more nearly does the system
approach to that of a uniform string stretched between the two
fixed points 4 and B. <

Let us represent by p the mass per unit of length, then
c’'l* =Tl/m=T/p. Put a=cl, then a is equal to the square root
of the ratio of the tension to the mass of a unit of length, Thus
a is unaltered by any of these changes of the particles.

If the length of the string AB be L we have L=(n+1)1
If n be very great we find p = 2¢ sin § = a ¢w/L very nearly.

Thus the notes sounded by a string loaded with small particles
at short intervals are such that their periods are given by
P =2L/ai. The note given by ¢=1 is called the fundamental
note, those given by the higher integer values of ¢ are called the
harmonics.

406. Determination of Constants. If we express a and g in terms of § and

substitute these in equation (4) we find the typical equation

¥1=2E,sin 2k0 cos (2¢t sin 0) + ZF, sin 2k0 sin (2¢t&in 6) ............ (),
where E; and F, have been written for 24,8in w, /~1 and 24,c08w,+/ -1, As be-
fore 0=ix|2 (n+1) and the symbol = implies summation for all values of { from =1
to i=n. This equation has n terms and thus we have 2n arbitrary constants, viz.
E,, E,...E, and F,, F,...F,. These have to be determined from the known initial
values of the n co-ordinates y,, ¥,...y, and of their initial velocities y,, y5...¥n-

Since k¥ may have any value from k=1 to k=n the typical equation (5) represents
as many equations as there are particles. We may imagine these to be written
down one under another exactly as described in Chap. viir. Art. 879. To find the
constant E; which runs through all the terms in any one column we use the
multiplier to separate that column from the others. To find this multiplier we
write down the vis viva of the system which in our case is 27=2my,. According
to the rule given in Chap. viir, Art. 387 or Art. 399, the proper multiplier for
the equation giving y, is fonnd by differentiating I' with regard to y,’ and substitut-
ing for y,’ the coefficient of the oscillation we wish to separate. The differentiation
in our case is my.,. The proper multipliers to separate the two columns dis-
tinguished by any value of i are therefore mE,sin 2k6 and mF, sin 2k9. Thus we
find after division hy common factors

2 {y, sin2k0} =4E;(n+1)

2 {y/sin2k8} =4F, (n+1)2csin6) *
Here we have written on the right hand side for = (sin 2k6)? its value } (n + 1) which
is easily found by ordinary trigonometrical processes.

These equations determine the values of E, and F; for any particular value of 1.
On the left hand side the co-ordinates y,, ¥, &ec. and the velocities y,’, ¥y, &e. are
sapposed to have their initial values, and the symbol = implies summation for all
values of k from k=1 to k=n, the value of i included in 8 being given.

407. Ex, 1. A string of length 2 (n+1) I is stretched between two fixed points
4 and B as before and loaded with 2n+1 particles at distances apart each equal
to I. Taking the origin at the middle particle, let the particles from k=-~¢ to
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k=+ ¢ be initially displaced so that y,= C sin kx/e. Let all the other particles be in
their undisturbed positions in the straight line 4B, so that y,=0 for all values of &
not comprised between the limits +e. Let also the system start from rest. Then
by proceeding as explained in the last article, we find that the motion is given by
¥ = ZE, 8in 2k0 cos (2ct sin 6),
0= _ir _Cecosir sin 2¢0sin w/e
“2(n+1)’ T 2(n+1) sin? #/2¢ — sin® 0°

Ex. 2. A string of length (n+ 1) I is stretched between two fixed points 4 and B
and loaded with n particles 4t distances each equal to I. The extremity 4 defined
by k=0 is suddenly moved a small space equal to y, at right angles to the original
position of the string and is there kept fixed. The motion of the &* particle is

where

. ' k . .
given by_ =Y (l—- i+ l) - 21—%"_’—1 cot 0 sin 2k6 cos (2¢t sin 6),

where 8 =ix[2 (n+1), and the symbol Z implies summation for all values of i from
i=1ton.

To prove this we have the following conditions; (1) for all values of t we have
#2=¥, When k=0, and y,=0 when ¥=n+1. These give By=y, and 4y(n+1)=-y,,
(2) when t=0 we have y,=0 for all values of k except £=0.

408. Agitation of one extremity. When one extremity
of the string of particles is agitated according to any given law,
a slight modification of the solution given in Art. 402 will enable
us to find the motion. Let us suppose that the extremity A, defined
by k=0, 1s agitated so that its motion is continuously given by
vy, = C sin ut 1t is required to find the motion of the particles.

We may notice that it is sufficient for our present purpose
that the law of agitation, however complicated, can be represented
by a finite series of terms of this form. The resultant motion
of any particle is then found by compounding together the motions
due to the several terms of the series.

The motion of the string of particles may be regarded as made
up of two separate oscillatory motions. There are (1) the forced
oscillation whose period is the same as that of agitating force,
and (2) the free oscillations whose periods are the same as those
found in Art, 404 when the two extremities of the string were
fixed. Our present object is to find the former of these.

"~ Proceeding as before, we have by equation (4)

= Ay + Bok + (da,+ Bok) (— 1) sin (20t +wg) + = (4,0* + B, sin (pt+w,).
Since g, = Csin ut when k=0 we have p =pu, @, =0 in the forced
vibration, Also unless =0 or 2¢c we have 4,=0, 4,=0.
Again, y,=0 when k=n+1, hence B,=0, B, =0 and the forced
vibration is given by
, A,+B,=C, A, 0" +B,B""=0,
where 2 and B are the two values of @ given by

4

vome 1= (&)} + v
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409. If p be greater than 2¢, let u = 2¢/sin ¢, and all possible
cases are included if we suppose ¢ to lie between 0 and 3.
Making the necessary substitutions we find for the forced

oscillation
y - (ta.n %‘b)’ (n41-8) __ (COt A_¢)3(ﬂ+l-!)
& (ta.n é¢)’(ﬂ+l) — (COt %¢)2(n+l)

If the string be very long we have n infinite, and this ex-
pression takes the simpler form :

¥,=(tan}$)* (= 1)*'Csinput ................. (2).
The first of these two -expressions applies to a finite string
of particles and is clearly made up of two expressions like the
latter, the coefficients being such that the displacements of 4 and
L are respectively Csin ut and zero. The motion has therefore
been analysed as the resultant of two motions each of which is
represented by equation (2).

.(=1)*Csin pt...(1).

410. If p be less than 2¢, let u=2csin v, the forced vibra-
tion then becomes
_sin2(n+1-k)+y
S= Tsm2m+ )y
This can be written in the form
_Ccos[put—2(n+1-k)y] Ccos[pt+2(n+1—k)y] )
E 28in 2 (n+1) Y 2sin2(n+ 1) TN
Taking the first of these two terms by itself we see that
after a time T given by uT'= 2+, the term is unaltered if we write
k —1 for k. This term therefore represents a wave which travels
the space between one particle and the next in the time 7. In
the same way the second term represents a wave which travels
with the same velocity in the opposite direction.

411. Two kinds of possible motion. Attention should -
be particularly directed to the great difference between the two
kinds of oscillatory motions. If the period of the agitating force,
viz. 2m/u be long enough to make pu < 2¢, the forced oscillation
transmitted to the string of particles is formed by the superposition
of two waves which travel in opposite directions without change
of magnitude. Thus the particles near the further extremity B3
of the string may be as greatly agitated as those near the point
of application of the force. Suppose Y =m/2q where ¢ is some
integer, then by (3) every gth particle counting from the further
" extremity B is permanently at rest and forms a mode. The
strings of particles between these successive nodes form equal
loops which are alternately on one side and the other of the
straight line AB. <

Let us now compare this state of motion with that which
results from the agitating force when its period is so short that

Csinpt ............... (3).
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#>2. In this case no motion in the nature of a wave is trans-
mitted along the string. Taking the case of a very long string
the micles are alternately on opposite sides of 4B, whife their
displacements form a series in geometrical progression. Thus
the displacements of the particles are less and less the more remote
they are from the agitating force.

412. The transition from the one kind of motion to the other
i8 easily understood by supposing the period of the agitating force
to grow gradually less and less until it passes the critical value.
It is clear that sin 4+ will increase but it cannot become greater
than unity. The number of particles, viz. ¢—1 between two
successive nodes decreases and finally vanishes when +={r.
But since no further decrease is possible the motion changes its
character.

The expressions (1) and (3) both assume the form 0/0 when
¢ =¥ ={w. The motion in the transitional state may be deduced
from either of these expressions by the usual rules in the dif-
ferential calculus. But we see independently by Art. 402 that it
is given by

9, = (4 + Bk) (— 1)*sin.2¢t.
Since y,= Csin2¢t when k=0 and y,=0 when k=n+1, we
easily fg/nd y,={1=Fk/(n +1)} (=1)* Csin 2ct.

413, Discontinuous agitating force. When the agitation communicated to
the extremity 4 is not continuous, but apts for a short time only, the resulting
motion may be found by the method of the superposition of small motions.

Thus if the extremity A be suddenly moved at the time t=0 a short distance
u, 8t right angles to 4B, the resulting motion has been found in Ex. 2, Art. 407.
Let us represent this motion by y,=y,f(k, t). After a time t=u has elapsed, let
the extremity 4 receive another displacement ¥,, the rest of the string being undis-
turbed. If we superimpose these two motions we obtain

n=YyoS (ks 1)+ X f (k, t—u).
At the time t=u, the second function and its differential coefficient with regard to ¢
both vanish for all values of k& from k=1 to. k=n+1. Thus the initial conditions
of motion at this time are expressed by the first function. This equation therefore
represents the motion produced by these two disturbances for all {ime from ¢t=u to
t=w.

Generalizing this, we see that if the extremity 4 be moved according to any law
say yo=F () for a time extending from t=0 to t=+, then the motion of the string

is given by n=[F sk t-udu

for all time extending from t=vy to t=w.

Since the agitating force ceases to act after the time t=1 it is clear that the
motion of the string after this time is made up of the free vibrations belonging to
a string of particles having each end fixed. Accordingly, if we substitute for the
function f (, t — u) its value given in Art. 407, we see that this expression for y, con-
siste of n oscillations whose periods are the same as those already found in Art, 404,
Their phases and magnitudes depend on the action of the agitating forcc.
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414. Ezx. Let the extremity 4 of the string of particles already described be
moved so that y,=Csin ut for a time extending from ¢=0 to t=x/u. BSupposing
the extremities to remain at rest for all subsequent time, prove that the motion of
the & particle is given by

. . T ex .
4Cu cos 8 sin 2k0 gin [2csm0(t—ﬂ)] cos [Iamo]
n+l : pt—4c3gin? !
where 0=1ix[2 (n+1) and the Z implies summation for all integer values of i from
i=1ton+l.

415. Analysis by Waves. There is another method of arranging the solution
of the equation of motion given in Art, 402 which has the advantage of enabling
us to analyse the motion by waves instead of by Lagrangian elements, see Art. 85.
‘Writing & for d/dt as usual the equation of motion becomes

n=2

P
Yot — 2y.+y._1=zi Yhooorrariiiiiiiitnnitniencionienes (1).

Treating the operator on the right-hand side as a constant, we proceed to solve
the equation of differences in the manner already explained in Art. 402, The two
constants 4 and B are now functions of ¢. Hence if we put

0= {”(2%)2}" L S— @),

we have - B=02F()+ T BF(t)..cccccivinrnreniiriininnnnnns 3).

This is 8 symbolical solution of the equation of differences with its two arbitrary
functions f(t) and F (t). When the forms of these functions are given, the opera-
tion represented by O can be performed and & solution of the equations of differences
will be found.

416. To obtain one interpretation of this symbolical solution let us suppose the
functions f(t) and F(t) can be expressed in a series whose general term is
A cos (2¢ sin 0t + w), where § is the parameter whose value distinguishes any term
of the series from another., All cases are clearly included if we suppose 8 to lie
between the limits 0 and 3.

Since the radical in the operator 01 contains only even powers of 3, we obtain the
result of its operation by writing — (2¢ sin 6)? for &, see Art. 265, We therefore find
Q cos (2c 8in Ot + w) =cos (2¢ 8in 6+ w — 6).

Repeating this process 2k times we have

¥, =34 cos (2¢ sin 6t + w ~ 2k6) + ZB cos (2¢ sin 6t + w + 2k6).

If we take by itself any one term of the first series wo see that if we write for E,
k+1 and for t, t+ T where T is given by csin 6 T'=0, the term is unaltered. Hence
(exactly as in Art. 87) any one term represents a wave which travels the space
between one particle and the next in the time 7. In the same way the correspond-
ing term of the second series represents a wave which travels in the opposite direc-
tion with the same velocity.

Each term of either series represents a wave. Each wave travels with a uniform
velocity but the different waves have different velocities, Consider the wave defined
by any given value of 9, and let a=cl. If v be the velocity, A the length of the
wave mesasured from ridge to ridge, and P the period of oscillation of any one
sin @ _nl P= %l

0’ T8’ T asing’

Since 0 lies between 0 and 3= we see that the velocities of all these waves lie

between @ and 2a/x; the length of every wave is greater than 2I; the period of

particle, we have v=a
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oscillation of every particle is greater than xl/a. The longer the waves are the
more nearly do they travel with the same velocity.

If we suppose ! to decrease the particles will be closer together, and if each
particle have proportionally less mass the quantity a will be unchanged. Consider-
ing then all waves whose lengths have a given inferior limit, we see that the closer
the particles are together, the mass of a unit of length being unchanged, the more
nearly do waves of all lengths travel with the same velocity.

417. Other interpretations of the symbolical solution (3) given in Art, 415 may
be obtained by substituting other forms for the arbitrary functions f (t) and F (¢).
Thus we might have

%= 3CHV=1 4 g2 jo ~reV-1.

If x be greater than 2¢ we may introduce the subsidiary angle ¢ as in Art. 409.

This expression then reduces to
#1=( 1" (tan §¢)* C cos pt.

418, Ex. If we write 2=kl and make the interval ! between the particles
indefinitely small, the operation represented by Q* takes the singular form 1=,
Show by finding the limit in the usual manner that 0%=¢~®?% anq thence deduce

yo=f (- 2+ t)+F(§+ z) .

419. Ex. 1. A long row of particles, each of mass m, is placed on a smooth
horizontal table. Each is connected with the two adjacent ones by similar light
elastio stretched strings of natural length .. They receive small longitudinal dis-
turbances such that each of them proceeds to perform a harmonic oscillation :
prove that there will be two waves of vibrations in opposite directions with the

same velocity, viz. U’ \/ 1,% ism ;, where U’ is the average distance between two

sucoessive particles, ¢ the number of intervals between two particles in the same
phase, and E is the modulus of elasticity. [Math. Tripos, 1873.]

Ex. 2. A light elastic string of length nl and coefficient of elasticity E is loaded
with n particles each of mass m ranged at intervals ! along it, beginning at one
extremity. If it be suspended by the other prove that the periods of its vertical

P . m 2041 x .
oscillations are given by the formula » Vs TR BT wherei=0,1,2..n-1
successively. Hence show that the periods of vertical oscillation of a heavy
elastic string are given by the formula Ti1 L% , where L is the length of the
string, M its mass, and { is zero or any positive integer. [Math. Tripos, 1871.]

Ex. 3. A railway engine is drawing a train of equal carriages connected by
spring couplings of strength u and the driving power is so adjusted that the velocity
is A+Bsgingt. Show that if ¢?{(M +4m) b2+ 4mk?} be nearly equal to 2ub® the
couplings will probably break, M being the mass of a carriage which js supported
on four equal wheels of mass m, radius b and radius of gyration k. Are there any
other values of g for which the couplings will probably break? [Coll. Ezam. 1880.]

Ex. 4, Equal uniform rods, » in number, and each of mass m, are smoothly
hinged together at their ends and are suspended by light elastic strings which are
fastened to the joints and the free ends. The other extremities of the strings are
attached to n+1 points in a horizontal line whose distance apart is equal to the
length of & rod. The strings are all of a natural length ! and modulus E, exeept
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the extreme ones whose modulus'is 3E. The system rests in equilibrium under the
action of gravity and the rods are in & horizontal straight line and al} the strings
vertical. Show that the penods of the small co-existent oscillations about this

position of equilibrium are — J__ {ml (2+oos —)% where i is zero or any integer,

the joints and ends being supposed to move approximately in vertical straight lines.
[Coll. Exam. 1881.]

420, Network of Particles. Let columns of threads in one plane be cut at
right angles by rows of threads. Let a particle of mass m be attached to them at
each intersection. Let the interval between two adjacent columns be I and the
interval between two adjacent rows be I'. Let the tensions of the rows and columns
be respectively T and T°. Let the particles vibrate perpendicularly to the plane of
the threads, and let the whole system be removed from the action of gravity.

Ex. 1. If w be the displacement of the particle in the 2* column and A* row
and T'/ml=¢?, T'/ml'=c', prove that the equation of motion is

dtw|dt?=c? (Wayy — 2w0a+ Wa_y) + ¢ (Wayy — 2wa+ w0 3).

Ex. 2. Prove that the motion of the particles may be represented by the series

whose general term is
w=2{a*(4b* + Bb*)+a~* (A'B*+ Bb~M}sinpt .................. (1),
where the = implies summation for all values of a and b connected by the equation

1 1
—p=ct (a—2 +Z)+c°(b—2 +-b) .

Show that if @« and b are both real, one at least is negative. Show also that if

the circumstances of the problem permit = +1 the corresponding coefficient of
sin pt becomes (£1){a* (A +Bk)+a > (4" + BE)} .cocvvvvveeenennnnnnnn. (2).
If a and b are both = + 1, the corresponding coefficient is
(1P (1} (A+Bh+Ck+DRE).......ccnenvivririnnnnnn, 3).

What is the general form of the solution, when one of the two a and b is

imaginary and the other real? When both are imaginary with unity for modulus,
w=ZP sin (pt — 2h0 ~ 2k¢
show that PP=e1 (2 sin )3 +¢3 (2 sin 4),)2}

Ex. 3. Show that the solution (4) of the last example represents a wave
motion. If \ be the length of the wave, v its velocity and a the angle the direction
in which it travels makes with the rows of thread, prove that

M=wlcosa, Ap=wl'sina, v?(x[A)3=c?sin?0+c?rin? .

Ex. 4. If the network be so constituted that cl=c'T, prove that there are two
directions in which a wave of given length will travel with the greatest velocity and
in these cases the fronts are the diagonals of the openings between the threads.
The two directions of least velocity are those in which the fronts are along the
threads,

Ex. 5. If cl=cl and if the intervals between the threads be very small, prove
that the network becomes & membrane which is equally stretched in all directions,
In this case waves of all finite length and all directions of front travel with the same
velocity.

Ex. 6. A network, otherwise infinite, is bounded by a rod which runs along the
diagonals of the openings, This rod is agitated according to the law w=P sin pt,
Prove that two distinct motions will result according as the period of agitation is
greater or less than w/(c’+c”)’. In the former case waves will travel over the net-
work, in the latter the motion will rescmble that described in Art. 411.° .
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421, NWetwork with Quadrilateral openings. To bring these particles into
order we regard them as arranged in rows and columns, a8 in rectangular networks,
though these are no longer straight lines. If the network be so streiched that the
tension of every thread is proportional to the length of the thread along which i
acts, the ratio being equal to c?, the equation of motion may be proved to be

Pwy=c(Aw,_,,+ A%, , ),
where A operates on h and A’ on k. This is exactly the same equation as that
which determines the motion of 8 rectangular network when ¢=¢’. Thus the
motions of the two networks will be the same when the central and boundary condi-
tions are made to correspond.

In this way we may deduce the motion of one kind of network from another
just as in Hydrodynamics we change one fluid motion into another.

Ex. 1. Bhow that the geometrical peculiarity of this quadrilateral network is
that each particle is the centre of gravity of the four adjacent particles to which it
is connected by strings.

Ex. 2, If (z, y) be the Cartesian co-ordinates of the particle (kk), prove that
z and y both satisfy the equation of differences A%z, ,+A%z,,,=0. B8how also
that the values of z and y may be written in the compendious form

Ty —1=Z4l2h+IV -1 3 (®—e %)= xging.
Other forms of the solution may be deduced as in Art. 420. For example, we
may have x=A+ Bh+ Ck+ Dhk.

In all these solutions the directions of the threads which form the sides of the
quadrilateral openings are defined by (1) making k constant and k variable, (2) by
making k constant and k variable. Thus taking a single exponential, we find
z=de* cos 28k, y=Ae*™gin28k. These lead to 23+y?=A%4, y/z=tan2Bk.
The quadrilateral openings are therefore formed by concentrie circles and radii
vectores from their centre.

Ex. 3. When the openings of the network are indefinitely small, the result of
the last example becomes z+y+/ —1=f(h+k+/—1), 80 that that result may be
regarded as an extension to Finite Differences of the theory of conjugate functions.

Ex. 4, If in Ex. (2) the values of 2 and & be not restricted to be integral,
prove that - Az =AY Az s = FAYsyae

The analogy of these resulis to some well-known theorems in conjugate functions
is obvious. '

Ex. 5. The Cartesian co-ordinates of the particles of a triangular network are
given by x=h, y="hk, where h, k are any integers. The equations to the three fixed
boundaries are =n, y=0, y=n'z. Following the rule given in Ex. 2, show that
the quadrilateral openings are formed by radii vectores from the origin and ordi-
nates parallel to the axis of y. Prove that the period of vibration, viz. 2x/p, is

given by : pP|c?=sin® (ix[2n) + sin? (ix/2n).

Theory of Equations of Dz:ﬁ'er;ences.

422. General Hquations of Motion. Let a series of n particles of masses
my, my... be arranged in a straight row at intervals equal to I, I... and be in
equilibrium under the action of external forces and their mutual attractions. Let
these particles be now displaced from their positions of equilibrium either all at
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right angles to the axis of the row, or all along its length. Let the displacements
at the time ¢ be y;, ¥, ... ¥,. Our object is to find these y’s as functions of the time.

The forces which act on the particles are of several kinds. (1) There are the
external forces of restitution which are functions of the displacements of the
particle acted on from its position of equilibrinm. These must supply terms to the
force function of the form — 33e,y,?; all the higher powers of the displacements
being rejected. (2) There are the forces of restitution which depend on the action
of the adjacent particles on each side of the particle under consideration. These
must supply terms to the force function which contain squares of the y's and pro-
ducts of y's with adjacent suffixes. But since 2yyu; =92+ ¥si,® - (Vo — ¥4 the
only additional terms thus introduced into the force function will be of the form
- 33y (Ysqa—y)% (3) There are the forces of restitution which depend on the
action of the two adjacent particles on each side of the particle under considera-
tion, These supply terms to the force function containing squares and produets of
y’s whose suffixes differ at most by 2. But since 2y,yi19=(Yira— 20y, + 1) + &o.,
where the &c. indicates squares of y’s and products of y’s whose suffixes differ by
unity, it is clear that the only additional terms introduced into the force function
are of the form —32c (Yrra — Wy + Y

The forces which depend on the action of the three adjacent particles may be
treated in the same way.

Besides these forces there ma.y be some external forces of constraint acting on
the two extremities of the row. These are functions respectively of y, and y, and
therefore supply terms to the force function of the form — j\y,* and —3uy,3. If
the forces of constraint act on the two last particles at each end we must add to
these the terms — 3\, (y;~1)? and —3Ju,; (Yu—¥uy)™

Let U be the force function and let the position of equilibrium be the posmon of
reference. To simplify the argument let us in the first instance restrict ourselves
to the following terms

2U = -y ~ pyn® — Za:9s* — 20 (Yo — ¥2)™
If 2T be the vis viva, we have 2T =Zm,y,2.
The Lagrangian equations of motion may therefore be written in the typical form
MaYs” == @+ (O (Watr = ¥) = buey (W2~ 321
==as+A (b AYa,),
where A has the usual meaning given to it in the calculus of differences.

423, The Boundary Oonditions. This typical equation represents the motion
of all the particles except the first and last. It does not include the case k=1,
because the term — 3, (y, - ¥,)? is missing from 2U and the term —\y,? has not been
taken account of, If the differential coefficients of these with regard to y, were
equal, the errors would correct each other. This gives

by (41— %) =M
Treating the other extremity in the same way, we find
- bn (yM-l - yn)=l‘yu'
There are no particles corresponding to the values k=0 and k=n+1, but the n
equations of motion corresponding to k=1 to k=n are all truly represented by the
same equation of differences if we suppose y, and ¥,,, to stand for their values as
given by these two conditions. ’

424, In the same way we may show that if we take the more general value for
U, viz. 20 =-Nyy* - N (A%1)* = #a¥? = By (BYp-1)?
— Zagy? - Zhe (Ays)? - Zex (A%0)%,
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the typical equation of motion becomes
My = — aYat+ A (baoy AYa—;) ~ A% (61 Aty:_ o).
The terminal conditions at one extremity are
by, — A (e Aty ) =Ny z
~ A%, =4y,
There are similar conditions at the other.

425, Method of Solution. To solve the typical equation of motion
Yy’ =~ aglfp+ A (baoy AYa,),
we follow the method of Lagrange. To find a principal oscillation we put
ya=L,;8in (pt+ w).
‘We thus have aLy— A (by_y ALy ) =p*my L.
This equation can also be written in the form
b Lyy=(@tby+b -pm) La- by Ly sy

If we wrote down at length the n equations given by k=1,2 ... n we could by
sucoessive substitutions express the value of L, as a linear function of L, and L,.
But since the ratio of L, to L, is given by one of the equations at the limits, we can
find L, in the form L,=C¢ (k, p), where C is either L, or L, at our pleasure or any
function of L, and L,. See Art. 423.

If we make a few of the substitutions indicated it will be at once evident that
¢ (k, p) is an integral rational function of p? of the (k—1)* degree. 'We must now
substitute this result in the equation of condition at the other limit. We thus have
after division by ¢ b, {¢ (n+1, p)- ¢ (n, )} +ue (n, p}=0.

This equation will be shortly represented by ¥ (p)=0. We may notice that this
reasoning is perfectly general, so that no value of L, not included in this solution
can satisfy the equation of differences.

This process is strictly Lagrange's method of finding the principal oscillations
and the final equation y (p)=0is merely Lagrange’s determinantal equation in an
expanded form. Acocordingly we see that it is an equation of the n® degree to find
the n values of p2.

But if n be considerable this method of elimination cannot always be employed.
The Calculus of Finite Differences sometimes enables us (as in Art. 402) to arrive at
a solution in a simpler manner. But whatever method be adopted the solution
obtained, whether partial or complete, must be included in that indicated above.

426. 1If the given function b, be such that b,=0, b, =0 and A, . are also zero, there
are no conditions at the limits. In this case the equation of differences defined by
k=0 only contains L, and L, the term - b, (y, - ,) being now absent. This equa-
tion therefore determines the ratio of L, to L, and the argument proceeds as before.

It is however more convenient to regard this case as included in the former with
the condition that %y, ¥, Yu-1» ¥ 8re not to be infinite. With this proviso the
terms — by (y; — ¥o) and b, (¥,+, — ¥,) cannot become finite.

427. 'The corresponding Differential Equation. The limiting case of this
equation of differences is peculiarly interesting. Let us make all the intervals
1, I, &o. between the particles equal to each other and each equal to I; and let us
write £=kl. Then in the limit when I is indefinitely small we have dr=1, and all
the various functions of % may therefore be regarded as continuous functions of z.
Writing m,=m,dz, a,=a,dr, and b,=b,/dz the equation of differences becomes in

the limit .y, — % (b, :—i" =p2m,3Y
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This equation is to hold for all values of x between certain limits, say =0 to

z=L. The conditions at the limits are
z=0’ bs%=)‘y» z=L, - :Zz;'“y'

In the same way we may find the differential equation which corresponds to the
equation of differences given in Art. 424,

In this equation it is not necessary to suppose y to be small, for since the
equation is linear we may multiply y by any constant quantity we please. It is _
necessary however that all the funotions and as many of their differential coeffi-
cients as enter into the equation should be finite.

Suppose the function 5,=0 at each limit and that A and u are both zero. The
conditions at the limit disappear for a” differential equation of the second order,
‘We thus have no equation to find p. But in the following theorems, the condition
that the solutions chosen for y must be finite between the limits remains in full
force. In some cases this one condition will limit the values of p-

428, Ex. If the differential equation be — diz ;(1 - 2% z.:; =p?y and the limits

be =0 to =1, show that no solution can be finite at both limits unless p*=i(i+1)
where i is any positive integer,

429. This equation of differences and its limiting case the differential equation
are of considerable importance in other besides dynamical investigations. It is
therefore useful to notice that though the equation presented itself with a dynami-
cal meaning, yet the results in this section are perfectly general. We may regard
the equations of motion as simply so many differential equations to find y,, y,, &e.
derived, as explained in Chap. vi1., from the two auxiliary functions 4 and C, the
other auxiliary functions B, D, E, F being all zero. The functions 4 and C are
here called T and —~ U and the symbol m is here replaced by py/ —1.

430. Three Propositions. We immediately infer the following theorems con-
cerning the values of p. .

Prop. 1. If the function m, or m, be positive between the limits, the function
T will be a one-signed positive fanction. It therefore follows from Art. 319, that
all the values of p? are real.

This also follows from the theorem that all the roots of Lagrange’s determinant
are real®,

431, Prop. 2. X the functions a, b, &c. or a,, b,, &c. as well as m; or m, be
positive between the limits, and if N\, x be also positive, the function C=-U will

* Another proof that the values of p? are all real is given by Poisson in Art. 90
of his Théorie Mathématique de la Chaleur. He there shows that if p? could
have a pair of imaginary values of the form f+g /-1, the integral ﬂ "m,X,,Y.,dz
(see Art. 432) could not be zero. The argument is as follows. Since, by Art. 425,
L, is a function of p?, it follows that the corresponding values of X, and Y, may be
written FGA/~1. This leads to the result [) ", (F3+ G%) dz=0, which is an
impossible equation if m, keep one sign between the limits. Poisson applies his
argument to the case of a differential equation of the second order, but it may
evidently be extended to the general case of a differential equation or an equation
of differences of any order.
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be a one-signed positive function. It therefore follows from Art. 315, that all the
values of p* are positive,

This also follows from the theorem in Vol. 1. that when the force function U is
s maximum in the position of equilibrium, that position of equilibrium is stable.

482. Prop. 8. Let p and g be two unequal possible values of the parameter p,
and let the corresponding solutions be indicated by the typical equations
=X, sin pt, and y,=Y,sin gt.
Then we may use the method of multipliers as explained in Chap. vinr. Art. 399, and
assert that Em X Ya=m X, ¥, +... + m X, ¥, =0.

In the ease of the differential equation this becomes f Lm.X,Y,d:c:O.
‘0

433. Sturm's Theorems. Restricting ourselves to the case in which the equa-
tion of differences has the form ‘ay, — A (by_1A%s ;) =My, let us compare the
different kinds of motion indicated by different values of p3.

In order to realize the motions of the several particles more easily, let an
ordinate be drawn perpendicular to the length of the row at the position of each
particle when in equilibrium. Let the length of this ordinate be equal to the dis-
placement of that particle at the time ¢t. The curve traced out by the extremities
of these ordinates will exhibit o the eye the nature of the motion. The intersec-
tions of this ocurve with the axis of the row are called nodes, the maxima and
minima ordinates are called loops.

Let all the possible values of p be arranged in ascending order beginning with
the least. :

In the solution given by the least value of p, it will be shown that at any one
moment all these ordinates have the same sign. Thus thromghout the motion the
indicating curve will form an arc with a single loop which oscillates from one side
to the other of the axis of .

In the solution given by the next smallest value of p, it will be shown that at any
instant there is one change of sign among the ordinates, as we travel from one
extremity of the row to the other. Thus throughout the motion the indicating curve
will form & double arc with two loops separated by a node.

In the solution given by the third smallest root there are at any instant two
changes of sign among the ordinates. Thus the indicating curve forms three loops
separated by two nodes, and so on through all the values of p.

In all these cases the nodes which belong to any value of p are separated by or
lie between the nodes which belong to the next value of p in the series.

434. To prove these theorems we require the following lemma. Let p and ¢
be two possible values of p, and let the corresponding motions be given by
yr=X,sinpt and y,= Y, singt. We have therefore

4, Xy~ A (b AX, ) =p=m,x.;
a Yk -A (bl'-l AYk—l) = qgm,, Yk ‘
Eliminating the function a; we find
(@~ P ) X Vo= b (Xapy Vi~ XiYopy) = iy (XiYey - Koy Vi)
This gives by summation from k=a to k=% )

(¢*~ P maXa¥a+ ... + mXe Vil =b (Xpsy ¥e ~ Xa¥ira) - bacy (Xa¥oy - Xa_y Ya)-

The right-hand side may also be written
b (Y AKX — X, AY,) - ba_y (Yo, AXa_ ~ Xo_, AY, ).

-’ o

4



STURM'S THEOREMS. 241

In the limiting ease in which the equation of differences becomes the differential
equation (Art. 427) this lemma takes the form

(@-9) [ mx¥ dz = [b. (r%-x%”)]:.

435. Cor. 1. Consider the full series of values X, X, ... X, arranged in order,
‘We shall have ranges of positive and negative values succeeding each other. Let
Xa ... X, be one of these ranges in which all the constituents have one sign, while
those on each side, viz. X, , and X, have the opposite sign. We shall prove that
if q=>p there is one change of sign at least in the corresponding range of Y’s extend-
ing from Y,_, to Yy, both inclusive.

" For if possible let all these ¥’s have one sign, then every one of the four terms
on the right-hand side of the equality in the lemma has the sign opposite to that of
the product X,Y,. Hence the lemma could not be true.

‘We have made no assumption as to the function a, but b, and m, have been
supposed to have the same sign, and to keep that sign from one limit to the other.

436. Cor. 2, Consider next a double range of values, say X, ... Xg... X, such
that all the constituents from Xa to Xg_, have one sign, say negative, and Xg to X,
have the other sign while (to make the double range complete) X,_, and X,;, have
opposite signs to their adjacent constituents, Then by Cor. 1 if q>p Y must change
sign betweer Y, , and Yg and also between Yg_, and Yiyy. We shall now prove
that a single change of sign between Yg_, and Yg will not suffice for both these
requirements.

For if it did, the products Xa¥a ... X, Y, would all have the same sign: but every
one of the four terms on the right-hand side of the equality in the lemma has the
sign opposite to that of the product X,Y,. Thus again the lemma could not
be true.

In the same way if we consider a triple range of values Xa... Xg... Xy ... X; 80
that X changes sign twice as k varies from one limit to the other, then by Cor. 1,
Y must change sign between Y, and Yg, Yg_; and Yy, Yy_, and Y;,,. But it follows
exactly as before that two changes of sign will not sufice for all three requirements.

437. Cor. 8. Consider the range of values X,, X, ... X, all of one sign begin-
ning at one extremity of the complete series and such that X, has the opposite
sign. We shall prove that if q>p there is one change of sign at least in the cor-
responding range of Y's extending from Y, to Y y,.

In this case the range begins at one exiremity, we have therefore the conditions
b, (X; — Xp)=AX; and b, (Y, — ¥;) =\Y; which hold at that extremity, The equality
in the lemma becomes therefore

(2 -p%) (X, Yy + .. X Y) =i (Xipy Y — X Vi)

If then all the Y’s from Y, to Y, had the same sign, every term on the left-
hand side would have the same sign, and the two terms on the right-hand side
would have the opposite sign, and thus the equality could not exist.

Similar remarks apply to a range terminating at the other extremity.

438, Cor. 4. Lastly consider all the n series X, ... X,,, 1, ... Y,, &ec., &c., cor-
responding to the n values of p, ¢, &c. arranged in order of magnitude beginning at
the least. By the preceding corollaries, each of these series must have at least one
more change of sign than any series before it. As there are but n terms in each
series, the last, i.e. the n*, can have but n—1 changes of sign. Hence the first
series has no changes of sign, the second. has one change, the third has only two and

R.D. II, 16
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s0 on. Also the changes of sign in each series alternate, in the manner already
expluined, with the changes of sign in any series nert to it.

439, It should be noticed that in Cor. 1 and 2 no use has been made of the
conditions at the limits. In these propositions therefore p and g are any arbitrary
quantities except that ¢ must be greater than p. In Cor. 3 the conditions at one
limit are introduced, so that all three corollaries are true if only X,/X,=Y,/Y, at
one limit. Finally in Cor. 4 the conditions at both limits are supposed to be
satisfied and therefore p and ¢ must now be different roots of the equation repre-
sented in Art. 425 by y (p) =0.

440. Let us suppose that the conditions of constraint at one limit are satisfied
a8 in Cor. 8. We may therefore write the lemma in the form
(@~ P ZmXY =b, (X1 Yy~ X Vyy)s
when the summation extends from k=1 to k=n. Since p and g are now arbitrary
quantities we may put ¢*=p*+dp®. We therefore have to the first order of small
quantities dp*ZmX2=b, (X4, dX, - X, dX,,)).
This equation may be written in the form

X2 =53 (b (Fars = X + 6T}~ Zo 153 00 (K= T+ 4T,

But the quantity in brackets is the left-hand side of the equation y (p)=0 arrived
at in Art. 425 as the equation to find all the possible values of p when the condi-
tions of constraint at both extremities are taken account of. We therefore infer
d
Zmxs= 2 ¥ (8- ﬁsz) .
It immediately follows from thm equation that no value of p can make both
¥ (p)=0 and y/ (p)=0. The equation ¢ (p)=0 cannot therefore have equal roots.

441, Ex. 1. If n particles of any masses at any intervals be arranged in &
straight row, as already explained, and oscillate transversely with the motion indi-
cated by any one value of the parameter p, prove that the straight line joining
any two particles cuts the axis of the row in a point which is fixed throughout the
motion,

Ex. 2. If y,=X,sinpt represent the principal oscillation corresponding to

the value p, prove that

P? Zmp X2 =20, X, + 2y (Xiyy — Xi) 2+ MX 2+ u X2
The two first =’s imply summation extending from k=1 to k=n, and the third
from k=1 to k=n-1.

Ex. 8. If a;, b, and m, be all positive and 2x/p be the longest period of a
principal oscillation, prove that p? is less than the greatest value of (a;+ by + by_1)/m,
and greater than the least value of a;/m,.

Xf 2¢/p be the shortest period of a principal oscillation, prove that p?is greater
than the least value of (a.\l- ba+by)/m, and less than the greatest value of
(@2 + 2b;+ 2b;;)/my.  In this example b, and b, are to be taken equal respectively to
A and u.

Ex. 4. If the function a, and b, keep one and the same sign or are zero, show
that no value of p can be zero unless A and u are both zero.

Ex. 5. Let y,=X,sinpt, y,=Y,singt represent two principal oscillatory
motions such that g is greater than p. If a range of values be taken, say Xa... X;,
which are all of one sign and such that X, is at a loop and that & node lies between
X,_; and Xa, prove that either a node or a loop lies within the range ¥,_, ... ¥,.




STURM'S THEOREMS. 243

Thence show that either a node or a loop of the shorter-timed oscillation must
lie within (or at the boundaries of) the space joining any node to any loop of the
longer-timed oscillation.

Ex. 6. In the equation P%Z+ Q:—Z+Ry=p5'y, where P, Q, R, S are given
functions of z, let y=X and y=Y be two solutions corresponding to different
values of p, and let 1 be the integrating factor of the first two terms on the left-
hand side. Prove that /uSXYdx=0 for any limits between which X, ¥ and their
differential coefficients are finite provided that at each limit either

daY X
P=0or iz Y= de X.

The differential equation of the second order mentioned in Art. 427 is discussed
by C. Sturm in the first volume of Liouville’s Journal. He there establishes the
theorems given in Art. 433 which we have called after his name. The extension of
these to equations of finite differences will be found in a paper by the author in
the eleventh volume of the Proceedings of the Mathematical Society, 1880, The
theorems on & network of particles are taken from a paper by the author in the
fifteenth volume of the same Proceedings, 1884,

16—2



CHAPTER X.

APPLICATIONS OF THE CALCULUS OF VARIATIONS.

Principles of Least Action and Varying Action.

442, Two fundamental equations. Let (g, ¢,, q,, &c)
be the co-ordinates of a system of bodies, and let ¢ stand for
any one of these. Let 27 be the vis viva of the whole system
and U the force-function, and let L =T+ U. As before let accents
denote differential coefficients with regard to the time.

Let us imagine the system to be moving in some manner,
which we will call the actual motion or course. Then ¢, g,,
&ec. are all functions of ¢, and it is generally our object to find the
form of these functions. Let us suppose the system to move in
some slightly different manner, i.e. let ¢,, ¢,, &c. be functions of ¢
slightly different from their actual forms. %‘:et us call the motion
thus represented a neighbouring motion or course. We may pass,
in our minds, from the actual motion to any neighbouring motion
by the process called vartation in the calculus of that name. By
the fundamental theorem in that calculus

1,

3 I:Ldt= [L&]: + / :z (% - % :7:‘,) (3q - ¢'3t)de + [z % (q— q’Gt)]:,
where the letter 3 implies summation for all the co-ordinates
¢, 9, &c. and it is implied by the square brackets that the terms
outside the integral sign are to be taken between limits.

The co-ordinates being independent of each other, each sepa-
rate term under the integral sign vanishes by Lagrange’s equations,
and we have therefore

t ! aT ar h
t [( dg q) t+zdﬂ sq]to
T . 4
=|-Hd+3 = ] ,
[ dg % b

where H is the reciprocal function of Z, as explained in the first
volume of this treatise. :

t
The integral ftoLdt has been called by Sir W. R. Hamilton
the principal function, and is usually represented by the letter S.
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If the geometrical equations do not contain the time explicitly,
T will be a quadratic homogeneous function of the velocities;
we have therefore 3 (dT/dq’) ¢'=2T. In this case H=T—U. The
equation of vis viva will now %o d and therefore T—U=~h, where h
is a constant which represents the energy of the system. The
Hamiltonian equation just proved now takes the simpler form

1 2%
59=8 f;Ldt=—7¢(8t‘—8t,,) + [E%Sg]“.

443. Other functions may be used instead of S Let us put
= Lo, = L1
V=8+[Ht],, ». 8V =388 +[Hdt+eH],

T .
8V=[t8H e ]
+ dqsqto

The function V is called the characteristic function.

If the geometrical equations do not contain the time explicitly,
we have H = 4, where h is a constant which may be used to repre-
sent the whole energy of the system. In this case ‘

- V=8+hk(t,—1) =f:(1’+ U)dt+f:(T- U)dt,

. V=2 f; Tds.

The function V therefore expresses the whole accumulation of the
vis viva, i.e. the action of the system in passing from its position
at the time ¢, to its position at the time ¢,.

For the sake of simplicity it will be generally assumed in this
section that the geometrical equations do not contain the time
explicitly,

445. In the proof of these theorems we have supposed that all the forces are
conservative, If in addition to the impressed forces there are any reactions, such
a8 rolling friction, which cannot be taken account of by reducing the number of
independent co-ordinates, we must use Lagrange’s equation in the form

4dL_dL_,

dt dq’ dq e

where, as explained in Vol. 1., P3q is the virtual moment of these reactions corre-

sponding to a displacement 3. In this case the quantity under the integral sign
will not vanish unless the variations are such that
ZP (3q - q'8t)=0.

Now ¢ being the value of any co-ordinate in the actual motion at the time ¢,
g+ d8q is its value in a neighbouring motion at the time t+4t. But ¢'ét is the
change of ¢ in the time 38t, hence g+ 3¢ — ¢'5t is the value of the co-ordinate in the
neighbouring motion at the time ¢, The neighbouring motions must therefore be
such that the virtual moments of the reactions corresponding to a displacement of
the system from any position in the actual motion into its position in a neighbour-
ing motion at the same time is zero. With this restriction on the variations, the
two equations which express the variations of § and ¥ will still be true.
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446, Another Proof. We may also establish these theorems without the use
of Lagrange’s equations. Let z, y, z be the Cartesian co-ordinates of any particle,
and let m be the mass of this particle. Let U be such a function that dU/dx,
dU[dy, dU|dz are the components of the impressed forces on this particle in the
directions of the axes., We may write mX, mY, mZ as usual for these components.
Then L=T+U=4Zm(z?+y?*+*) + U.

By the fandamental theorem in the Caloulus of Variations, we have

f"Ld: [Lu]" [z- 8z - x'cz)]" /“ :—f-dﬁt%) (3z -ty dr,

where the variations 3z, &c. are connected together by the geometrical relations of
the system. If we substitute for L and remember that T' is a homogeneous quad-
ratic function of #/, ¥/, #, this becomes

3 [Lat=[(U-T)ot+Zmess! | [2m (X -2 (/o) dt.

Now 3z — 23t is the projection on the axis of z of the displacement of the particle
m from its position in the actual motion at-the time ¢ to its pesition in a meigh-
bouring motion at the same time. Hence the part under the integral sign vanishes
by the principle of virtual velocities,

The term Zmx'dz is clearly the virtual moment of the momenta. If the co-
ordinates be expressed as functions of any independent quantities g,, gy, &e., it has
been proved in the first volume that this is equal to = (dT/dq’)5q. Putting
T- U=H we have as before

3 f o Ldt=[ - Hot+ 2 (dT)dg) 3 J

447. Principle of Least Action. Let us call the positions
of the system at the times ¢, and ¢, the initial and terminal posi-
tions. Let us suppose these fized so that the actual motion and all
its neighbouring motions are to have the same initial and terminal
positions. In this case &g vanishes at each limit and the two
fundamental equations giving the values of 8S and 8V take the
simpler forms

ty
58=5[ Ldt=—h (5%, -5t
to

§V=25 f “Tdt = (1, — 1) S,

where it has been supposed that the geometrical equations do not
contain the time explicitly.

If the time of transit of the system from its initial to its terminal
position be also given, we have dt, = 8t,, and therefore

) f "Ldt=o0,

If the constant 2 be given, or which is the same thing, if the
energy of the system be given, we have 8h = 0, and therefore

o I'dt=
to
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448. Since §V'=0, it follows that for the actual motion V'is a
maximum or minimum, or at least the change it undergoes in
passing to any neighbouring motion is of the second order of small
quantities. It cannot be a maximum since by causing the bodies to
take circuitous paths we may make V as large as we please. Again,
since the vis viva cannot be negative there must be some mode
.of motion from one given position to another for which the action
is the least possible. When therefore the equations supplied by
the Calculus of Variations lead to but one possible motion that
motion must make ¥V a minimum. But when there are several
possible modes of motion, though none can be & maximum some
may be neither maxima nor minima. With this understanding
we may infer the two following theorems.

449. Let any two positions of a dynamical system be given,
the actual motion is such that [7'd¢ is less than if the system
were constrained, without violating any geometrical conditions, to
move in some other manner from the one position to the other
with the same energy; these other motions being such that,
throughout, 7' is the same function of the co-ordinates and their
differential coefficients. This particular inference from the general
equations in Art. 447 is usually called the Principle of Least
Action. '

In the same way, if the system move in the varied course not
with the same energy, but in the same time, from the one given
position to the other, then [ Ldt is a minimum.

450, Maupertuis conceived that he could establish & priori by theological argu-
ments that all mechanical changes must take place in the world so as to oceasion
the least possible quantity of action. In asserting this it was proposed to measure
the action by the product of the velocity and space; and this measure being
adopted, mathematicians though they did not generally assent to Maupertuis’
reasonings found that his principle expressed & remarkable and useful truth, which
might be established on known mechanical grounds. Whewell’'s History of the
Inductive Sciences, Vol. 1. p. 119.

Euler, at the end of his Traité des Isopérimetres, 1744, established the truth of the
principle for isolated particles describing orbits about centres of force. This was
afterwards extended by Lagrange to the motion of any system of bodies acting in
any manner on each other. In deducing conversely the equations of motion from
the principle of Least Action, Lagrange seems to have fallen into some errors which
were pointed out by Ostrogradsky in his Mémoire sur les équations differenticlles
relatives au probleme des Isopérimetres published in the Memoirs of the Academy of
Sciences at St Petersburgh in 1850.

451. Motion deduced from the Calculus of Variations.
By making the first variation of either ¥ or S equal to zero (under
the given conditions) according to the rules of the Calculus of
Variations we may conversely find the co-ordinates g¢,, g,, &c.
as functions of . Amongst these functions of the time we shall
certainly find the motions given by Lagrange’s equations because
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we have just proved that these make the first variations equal to
zero. But it is poesible that there may exist other courses or
modes of conducting the system from the initial to the terminal

itions which (though contrary to mechanical laws) may make

or 8 a minimum, It is easy to see that some other courses
must exist, for the two positions may be so placed that it is
impossible to project the sysiem from the initial position with a
given energy so as to pass through the terminal position. Thus
suppose it is required to project a particle under the action of
gravity from an initial position with a given velocity so as to pass
through a position B on the horizontal line through 4, but beyond
the maximum range. We know that this cannot be done with
real conditions of projection in a real time. Yet some course of
minimum action from 4 to B must exist. We shall now show,
(1) that the ordinary processes of the Calculus of Variations,
which are founded on the supposition-that the variations of the
independent co-ordinates may bave any .sign, lead only to La-
grange's equations; (2) that there are certain other modes of
motion which are so situated that the co-ordinates (along some
part at least of the course) cannot be made to vary on one side
without introducing imaginary quantities, and that when these
impossible variations are omitted such courses may give a maxi-
mum or minimum.

452. Continuous Motions. Beginning with the first of these two proposi-
sitions, let us make 3S and 3V equal to zero according to the rules of the QOaleulus
of Variations,

Taking 8/Ldt=0 where the time of transit is given, we immediately have

f" a€L_d "—L) 3 dt=0
dg “a@ag) "=
for all variations. Sinee the 3¢’s are all arbitrary and independent, it follows that
each coefficient under the integral sign must vanish separately. In this manner we
are led directly to Lagrange’s equations of motion.

458. If the action s to be a minimum some further considerations sare
necessary because the condition that the energy T'— U should be constant may act as
a limit to the variations which ean be given to the co-ordinates. Let % be this
constant, then following Lagrange’s rule in the Calculus of Variations we put

W=T+\(T-U-r#) and make 5/ Wdt=0,
w1thout regard to the given condition. Afterwards we choose the arbitrary quantity
A so that the given condition is satisfied. Then & /Wdt being zero for all variations
of the co-ordinates, it immediately follows that 8/7dt is also zero for all variations
which do not violate the given condition. With the same notation as before

we have
S Wt =[Wat]+Z ﬁ(‘%’ - % ‘Z,’) (5g—q'8t) + [2 " (g - q'at)] =
where the integrals and the quantities in square brackets a.re to be taken bet\wen
the given limits, which are omitted for the sake of brevity.
First, let us consider the part outside the integral sign. The initial and final
positions being given, eacl1 3¢=0. We therefore have
{W-=(dW/[dq) g’} 8t=0,
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This equation is satisfied by 3t=0, but since the time of transit is not to be the
same in the actual and varied motions this factor is to be rejected. Also T is &
homogeneous quadratic function of the ¢’s, hence = (dT/dq’) ¢'=2T. Substituting
for W its value and using this equation we find (1+\) T+X(U+4)=0. But \ is
such that - U=h. Hence (1+2\) T=0, and therefore A =—14.

Next, consider the part under the integral sign. By the rules of the Calculus of
Variations we have (since the 3g’s are all arbitrary) the typical equation

Substituting for W and giving \ its value just found, we have the typical
Lagrange’s equation.

454. Ex. If we add to the conditions used in the principle of Least Action the
condition that the time of transit as well as the energy is to be the same in all the
varied motions, show that the minimum does not in general lead to Lagrange’s
equations, Following the same notation as in the last article, show that the mini-
mum for a given time (not necessarily equal to the time of free transit), leads to
A=-3+4/T, where 4 is a constant to be 80 chosen that the energy has its given
value. Show also that when the time of transit is given so that 4=0, the minimum
thus found is the least.

_455. Discontinuous Motions. Turning now to the second proposition men-
tioned in Art. 451, let us investigate if there can be any other modes of motion
besides those just found, which make the first variation of the action equal to zero.
In obtaining these equations it is assumed that the 3¢’s are all independent ; but, if
the conditions of the question imply any boundary, this may not be true for any
actual motion which takes the system in the immediate neighbourhood of that
boundary. Thus, in our case, since T cannot be negative, all positions of the
system outside the boundary U+ k=0 are excluded. In the immediate neighbour-
hood of this boundary the variations of the co-ordinates may not be susceptible of
all signs*. It follows that a motion along the boundary may be a course of mini-
mum action though not given by the ordinary equations of the Calculus of
Variations. .

It is evident that we cannot make the system travel along the boundary whose
equation is U+ h=0 becaiise this requires all the velocities to be zero. But the
system may travel as near as we please to this boundary with a total ¢ action” as
small as we please. The following discontinuous motion may therefore be a course
of minimum action. First project the system from its given initial position (4)
with such velocities and directions of motion, but with the given energy, that every
particle may come simultaneously to rest. Assuming the equations to give real

* Exceptional cases, similar to these, occur in the theory of maxima and minima
in the Differential Calculus, When the independent variable is not capable of
unlimited increase, but is bounded in one or both directions, its value at either
boundary sometimes corresponds to a maximum or minimum value of the dependent
variable, though this is not found by making the differential coefficient equal to
zero.

In the Calculus of Variations some instances in which the variations at the
boundaries are not susceptible of every sign are given in De Morgan’s Differential
Calculus, page 460, &o. These appear to have been rediscovered by Dr Todhunter
in his * Researches in the Calculus of Variations” Art, 18. See also Chap. v of
his ¢ Researches &c.” '
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conditions of projection, the system is then situated on the boundary. Let
this position be called B. Next move the system close to the boundary until it
reaches such a position (C) that on being set free without velocity it passes through
the given terminal position (D) under the action of the forces represented by U.
The motions from 4 to B and C to D are courses of minimum action, while the
action from B to C may be made as small as we please.

456. We may show that the action along this discontinuous course is really a
minimam. To prove this, let us take any neighbouring motion beginning at 4 and
enling at D. Let B’, C’ be any positions of the system on the neighbouring course
near B and C respectively. Since 3h=0, the action (Art. 443) along 4 B’ exceeds
that along 4B by 3V=[ Z (dT/dg") dqt. This vanishes at the lower limit since
both courses begin at 4. Since T is a quadratic function of the velocities, dT[dy'
contains a velocity in every term and all these velocities vanish in the position B,
i.e. at the upper limit. We therefore have §V'=0. We infer that the difference
of the actions along 4B and AB’ is of the order of the quantities neglected in
investigating this expression for V. Thus the difference of these two actions is of
the order of the squares and products of 3¢ and 3¢’

Next let M’ be any position on the neighbouring motion B'C” so that the change
of place B'M’ is finite. The velocities in every position of the system between B’
and M’ are of the order 3¢’, and hence the semi vis viva T is of the order (3g')%
But the time of transit from B’ to M’ varies inversely as the mean velocity, hence
the fTdt, i.e. the action from B’ to M’, is of the first order of small quantities,
viz. 8¢'. This action is essentially positive, and we have just proved that it is
infinitely greater than the difference of actions along 4B and 4B'. Hence the
action along AM' is greater than that along 4B.

In the same way if N’ be a position of the system properly chosen on the neigh-
bouring course nearer C’, we may show that the action along N’D is greater than
that along CD. The action along M’'N’ is also greater than that along BC. It
follows therefore that go long as the separation in space between the positions B
and C is finite, the action along ABCD is less than that along any neighbouring
course.

457. Ex. If we use the principle of least action in the manner explained in
Art. 453 we virtually remove the restriction on the variation of the co-ordinates.
Show that in the discontinuous course the first variation of fWdt is zero if we
regard \ as a discontinuous function which is equal to —} along the courses 4B,
CD and equal to zero along the course BC.

458. 1Is the Action an actual minimum® To determine
whether the integral is a mazimum or a minimum or neither,
we must examine the terms of the second order in the variation
of the integral to ascertain if their sum keeps one sign or not for
all variations of the independent variables. This is a very trouble-
some process, but it is unnecessary to discuss it. It will be
sufficient to remind the reader of some remarks of Jacobi, given
in the seventeenth volume of Crelle’s Journal, 1837, and trans-
lated in Dr Todhunter’s Hustory of the Calculus of Variations,
page 250,

Suppose a dynamical system to start from any given position
which we shall call 4, and to arrive at some position B. If the
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time be given, the motion is found by making 8fLdt =0; if the
energy be given, by making 8fT'dt=0. The constants which
occur in integrating the differential equations supplied by the
Calculus of Variations are to be determined by means of the
given limiting values; but as this involves the solution of equa-
tions there will in general be several systems of values for the
arbitrary constants, so that several possible modes of motion from
4 to B may be found which satisfy the same differential equation
and the same limiting conditions. Now let one of these modes
of motion be chosen, and let the position B approach 4, so as to
be always on this chosen mode of motion. Suppose that when B
reaches the position C another possible mode of motion from A
to B is indefinitely near to the chosen motion. Then C determines
the boundary up to which or beyond which the integration must
not extend if the integral is to be a minimum*. .
Jacobi illustrates his rule by considering the principle of least
action in the elliptic motion of a planet. Let S be the sun, and
let the particle start from A towards aphelion to arrive at a point
B. The path is known to be an ellipse with S for focus. Since
we use the principle of least action, the energy of the motion is
given: hence the major axis of the ellipse is known, let this be 2a..

* One part of the argument may be briefly sketched thus. Let the system
depend on two co-ordinates ¢,, q, and let /Wdt be the integral under consideration.
Restricting ourselves to such variations as have the limits fixed, the terms of the
first order may be written f(Mu+Nv)dt, where u and v contain the arbitrary
variations, Since » and v may bhave any sign, we have along the chosen course
M =0, N=0. The second variation of this integral may be written f(§Mu+ §Nv)dt,
where 8M=(dM/dq,) 8q, + (dM|dq,) 8¢, + (dM[dq,) 8¢, + (AM[dqy)) dg,’ and 8N is ex-
pressed by a similar equation.

Let the equations to the chosen course be

G=9( a1, ap, a5, ), .=V (t, a5, a3, a5, a,),
where a,, a,, a3, a, are the four constants of integration. These are of course
the integrals of the differential equations M=0, N=0. The equations to the
neighbouring course which brings the system from the position 4 to the position C
are found by writing a, + da;, &e. for a;, &c. It therefore follows that 8¢, == (d¢/da) da
and §¢,=23 (dy/da)da is a solution of the simultaneous differential equations
8}, =0, sM=0.

This variation from the chosen course must therefore make the terms of the
gecond order vanish. Thus, by Taylor’s theorem, & fWdt is now expressed by the
terms of the third order. Since 6&:0, 83 =0 are linear equations to find 8¢, and
3q,, they are still satisfied if we change the sign of all the constants 8a,, &e. at
once. The terms of the third order may therefore be made to be of any sign.
Thus 8 /Wdt does not keep one sign for all variations from the chosen course.

The result is that if the final position B be at C, variations from the chosen
course can bé found which make & fWdt either positive or negative. If B be beyond
C the same conclusion follows, for we may conduct the system from 4 to C along
the neighbouring course and then from C to B along the chosen course.
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The other focus H of the ellipse is the intersection of two circles
described with centres A and B and radii 2¢a—S4, 2a — 8B re-
spectively. The two intersections give two solutions which only
coincide when the circles touch, that is when the line 4B
through the focus H. Thus if we draw a chord AC through H
to cut the ellipse described by the particle in C, then the terminal
position B must fall between 4 and C if the integral which occurs
in the principle of least action is really to be a minimym for this
ellipse. If B coincide with C, then the second variation cannot
become negative, but it can become zero, so that the variation of
the integral is then of the third order, and may therefore be either
positive or negative. If B be: beyond C the second variation
itself can become negative.

If the particle start from 4 towards perihelion, then the ex-
treme point C is determined by drawing a chord A4 C through the
focus S to cut the ellipse in C. For if A and C are the limits we
can obtain an infinite number of solutions by the revolution of
the ellipse round AC. If in the last case the second limit B fall
beyond C, Jacobi considered that there would be a curve of double
curvature between the two given points for which the action is
less than it is for the ellipse. But this supposition is unnecessary,
for the discontinuous course spoken of in Art. 456 supplies the
minimum for this case.

459. Bxamples. Ex. 1. A particle, under the action of a centre of force at O
whose atiraction varies as the distance, is projected from a given point 4 with a
given velocity in such a direction as to reach another given point B. If C be the
first point on the elliptic path at which the tangent is perpendicular to the direction
of projection at 4, prove that the *““action” from 4 to B will be or will not be a
minimum according as B is between 4 and C or beyond C.

If B lie within a certain ellipse having its centre at O and one focus at 4, prove
that there are two directions in which the particle ecan be projected from 4 to reach
B and that the action is & minimum for one of these and not for the other. If B
lie outside this bounding ellipse, the particle cannot reach B. If OA be produced
to D, where D is such that the velocity of projection at 4 is equal to that acquired
by a particle starting from rest at D and moving to 4 under the action of the
central force, prove that the major axis of the bounding ellipse is equal to twice the
distance OD.

If the point B be without the bounding ellipse, the particle can reach B only if
properly conducted thither by some curve of constraint. The curve of minimum
action can be found by the following construction. Produce 04, OB to meet the
auxiliary ecircle of the bounding ellipse in E and ¥. The required path is in-
definitely near to AEFB.

To prove these results, let us find the direction of projection from 4 that the
particle may pass through B. We notice that if OD =k, the sum of the squares of
any two semi-conjugate diameters is k2. Bisect 4B in N and let ON=u=,
N4=NB=y. Let the required direction of projection from 4 cut QN producel
in I Then from the equation to the ellipse we have a quadratic to find OT,
showing that there are in general two elliptic paths which may be described in
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passing from 4 to B. Let the tangents at 4 to these intersect ON produced in
T and U; we deduce from the quadratic that OT . OU=k? and NI .NU=y2
These equations determine T and U.

‘We see at once that the fwo directions of projection oomclde when OT=k, i.e.
when the tangents at 4 and B, viz. AT and BT, are at right angles,
~ Describe two circles with centres O and N and radii equal to &k and y respectively.
Describe a third circle on TU as diameter. Since OT . OU=4%? this third circle
cuts the circle with centre O at right angles. Similarly it cuts the circle with
centre N at right angles. -The tangents from the centre R of this third circle are
therefore equal. The centre R is therefore on the radical axis of the circles whose
centres are O and N. This gives an easy geometrical construction to find 7' and U.

The points T and U will be imaginary unless the radical axis lie outside the
circles. The circles must therefore not intersect. Hence ON +NA must be less
than k. Produce 40 to 4’ so that-04'=04. Then we see that 4B+ B4’ must be
less than 2k. Hence unless B lie within an ellipse whose foci are 4 and 4’ and
major axis 2k, the particle cannot be projected from 4 to pass through B.

Ex. 2, A particle is projected from a given point 4 under the action of gravity
and AC is a focal chord of the parabola described. Prove that the action from 4
to B is not a minimum unless B lie on the parabola between 4 and C. If B lie
beyond C, find the path which makes the action a minimum,

The first result follows at once from Jacobi's example. To answer both these
questions, we notice that there are two directions (if any) in which a particle may
be projected from one given point 4 to pass through a second given point B. These
have their foci S, S’ one above and the other below the chord A4 B, so that SS’ and
AB bisect each other at right angles, These paths coincide when B is at C, and
wherever B may be one of these has its focus below 4B. This parabola is the
path required.

Ex. 3. A particle, projected from a given point 4 with a given velocity, describes
a circle about a centre of force on the circumference whose attraction varies in-
versely as the fifth power of the distance. If B be any other position on this circle
through which the particle will pass before arriving at the centre of force, prove
that the action from 4 to B is & minimum according to Jacobi’s condition.

460. Lagrange’s transformation. Lagrange has given a general view of his
transformation from Cartesian co-ordinates which seems worthy of notice. Let I,
be any function of z, z', &c., vy, ¥', &c. and of ¢, not resiricting ourselves to dif-
ferential coefficients of the first order. Let the variables z, y, &c. be transformed
to others g,, g, &c. by “writing for «, y, &c. any functions of g, g5, &c. and of ¢,
The function L is thus expressed in two ways. By comparing the two values of
& fLdt, given by the Calculus of Variations when the time is not varied, we see that

j ) (ﬁ‘ 4 4L, ge. 6zdt—f::2 Z;‘ ;‘Zh&c)wdt
is equal fo the difference of the integrated portions of the two variations, Hence the
expression under the integral gign must be a perfect differential with regard to ¢,
quite independently of the operation 3. But this cannot be unless the expression
is zero, because it contains only the variations &z, 8¢, &c. and not the differential
coefficients of these variations, We have therefore the general equation of trans-

formation
dL d dL dL d dL

‘ - &e)az 2z dtdq+&°)6q’
where the 2 implies summation for all the variables z, g, &e., ¢), ¢,, &e.
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If z, y, &c. be Cartesian co-ordinates and if L be of the usual form Zmz"2+ U,
the left-hand side of this equality vanishes by virtual velocities, Hence the right-
hand side must also vanish. The g’s being all independent, we are led to Lagrange’s
equations,

461. Oyoclical Motions. When the geometrical equations do not contain the
time explicitly the symbol H or h may be used to express the energy of the system.
If we represent the energy by E, Sir W. R. Hamilton's fundamental equation may

. 1 ar ¢
be written 2 / Tat=t3E + [z ,Bq] )
° dq 0

This equation has been applied to the motion of a system of bodies oscillating
in such a manner that the motion repeats itself in all respects at some constant
interval. Let this interval be i. Suppose that some disturbance is given fo the
system by the addition of a quantity of energy SE. Let the system be such that
the motion still recurs after a constant interval, and let this interval be now
i+8i. The symbols of variation in Hamilton’s equation may be used to imply a
change from one kind of motion to the other. If the time ¢ be taken equal fo the
period ¢ of complete recurrence, the initial and terminal states of motion are the
same and therefore the last term vanishes when taken between the limits. The
equation reduces to 23 ﬁ Tdt=i3E. Let T, be the mean vis viva of the system

during a period of complete recurrence of the motion, then j}; Tdt=iT,. We

3E _ ,3(iTym)
therefore have T, 2 i,

This equation may be put into another form, Let P, be the mean potential
energy of the system during a period of complete recurrence ; then we have
8P, +8T,=8E,

3P, - ar,,,:zr,,,%’ ,

which serve to determine the change in the mean potential and kinetic energies
when ahy additional energy 8E is added to the system.

These or equivalent equations have been applied by Bolzman, Clausius and
8zily to the Dynamical Theory of Heat. The papers of the two latter are in
various numbers of the Philosophical Magazine extending from 1870 onwards.
The second of the equations above written may be called Clausius’ equation.

462. Ex. 1. If the period of complete recurrence of a dynamical system is not
altered by the addition of energy, prove that this additional energy is equally dis-
tributed into potential and kinetic energy. See Art, 73.

Ex. 3. A quantity of energy dE is communicated to a system whose mean
semi vis viva during a period of complete recurrence is T,. This is repeated
continually, so that at last the mean vis viva and the period of complete recurrence
are the same as at first. Prove that f ‘%E:O. This example is due to M. Szily,

m
and is important in the Dynamical Theory of Heat.

On the Solution of the General Equations of Motion.

463. Hamilton’s Solution. Sir W. R. Hamilton has ap-
plied his fundamental theorem expressing the variation of the
Principal and Characteristic functions to obtain a new method of
solving dynamical problems.
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Let (a,, &c.) be the values of (q,q,q,q,&c)
when t—t a,nd let 1’ be the same function of l(a ‘) !) that

T is of (91» q,, &c.). We have then by Art. 442 when £ is written
for the upper limit
dT daT,

88=3 8¢ —2 28— H8t+H°8t,,.

dT dT .
7= 2. o —_
al_qu 8g— d,8a+tSH t0H,.

It is clear that both S and V may be regarded as functions of
the time and the initial conditions of the system of bodies, i.e. we
may regard either of these quantities as a function of ¢,, ¢, a,, a,,
&e., a/, a,, &c. Also the co-ordinates % 9o &, are functions of
t, ¢ and the same initial conditions. hough these functions are
in general unknown, yet we can conceive the initial velocities
a/, a/, &c. eliminated, so that § and V" are now functions of %, ¢,
and a,, a, &c, ¢, ¢,, &c. the co-ordinates of the system at ‘the
times ¢, and ¢.

Let S be thus expressed, then, by the equation for 8S, we have

the typical equations
_d4aTr d8_ dT,

dg dq’ da” dd’

Since T is not a function of ¢”, the first of these equations
contains no differential coefficient of a co-ordinate higher than the
first. This equation, thergfore, represents typically all the first
integrals of the equations of motion.

Since 7, contains only the initial co-ordinates and the initial
velocities, the second equation has no differential coefficient of
any co- _ordinate in it. This equation, therefore, represents typically
all the second integrals of the motion.

Besides these we ha.vg the two e(ggations

d

PR dt, =4,
where, if the geometrical equations do not contain the time ex-
phcltly, we may put h for H, h being a constant. In this case
these integrals may be used to connect the constant of vis viva
with the constants (a, o', &c.).

Comparing Art. 447 with these results we see that § is such
a function, that all the equations of motion and their integrals are
included in the statement that &S is a known function of the
variation of the limits. If we keep the limits fixed, we get
Lagrange’s equations; if we vary the limits we get the integrals.

464. In just the same way, if we regard ¢/, ¢, &c, as
functions of ¢, the initial co-ordinates and their initial velocltles
we may eliminate ¢ also by means of the equation

dr
H=-U-T+37:4.
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We may climinate ¢, also by means of a similar equation
giving H, in terms of the initial conditions. Both these reduce
to H = h,=T — U when the geometrical equations do not contain
the time explicitly.

Let us suppose V to be expressed in this manner as a function
of the initial co-ordinates, the co-ordinates at the time t, and of H
and H, Then, by the equation for 8V,

dv_dT dV _ dT, dV—t av _ y
dg dq’ da~  da’’ dH =~ dH,

Supposing V to be known, the first of these equations gives in
a typical form all the first integrals of the equations of motion.
The second supplies as many equations as there are co-ordinates
(9, q,» &c.). When the geometrical equations do not contain the
time explicitly these do not contain ¢, but they all contain h.
One of them, therefore, reduces to the relation between this
constant and the constants (a, a’, &c.). The two last equations
become dV/dh =t —t, This will give another second integral of
the equations of motion containing the time.

465. The typical expression dT/dg' has been called in Vol. 1.
the momentum corresponding to the co-ordinate ¢ or, more briefly,
the ¢ component of the momentum. We may tilerefore say that
the ¢ component of the momentum is given by dS/dq or dV/dgq
according as we are using S or V.

The momenta corresponding to the co-ordinates ¢,, g,, &c. will
be represented by the symbols p,, p,, &c., or typically by the single
letter p.

466, I Q= :o(qu'+H) dt, where p=g, prove that 3Q=[Hat+Seop, .
Thence show that if Q be expressed as a function of the initial and terminal
components of momentum, viz. (b;, b;, &c.) and (p,, p,, &o.) and of the times ¢, and ¢,
then z—g=q, %—g—:- a, %=H. This result is due to Sir W. R. Hamilton.

467. Bxamples. Ex. 1. A homogeneous sphere of unit mass rolls down a
perfectly rough fixed inclined plane. If the position of the sphere is defined by the
distance g of the point of contact from a fixed point on the inclined plane, show that

7 (q-a)? 1 5
=15 L 4G grargt- g o,

where g is the resolved part of gravity down the plane and £,=0.

Thence obtain by substitution the Hamiltonian first and second integrals of the
equation of motion.

We easily find, as in Vol. 1., that g=a+a't+5gt%. Also T=;¢? U=gq.
To find S, we substitute in S=/t(T+ U)dt. After integration we must eliminate
a' by means of the equation for g.

Ex. 2. Taking the same circumstances of motion as in the last example, show

that V=32—g i {(gg+m)¥ - ga+mY. Thence also deduce the Hamiltonian first
and second integrals.
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Ex. 3. Show how to deduce the equation of vis viva, from the Hamiltonian
integrals,

‘We have ¥ a function of ¢;, ¢, &c. and H. Hence "-g:z%q'+;!§ ‘%I.
which becomes by Hamilton’s integrals 2T'=X3 (dT/dq') ¢’ +t (dH/dt). When T is &
homogeneous quadratic function of (g, g,', &c.) this gives dH/dt=0, or H=con-
stant. The equation of vis viva may also be deduced from Hamilton’s principal
function. ’

Ex. 4. When the geometrical equations do not contain the time explicitly,
show that no two of the Hamiltonian integrals can be the same and no one can-be
deduced from two others,

If it were possible that two could be the same, the ratio of dT/dg,’ to dT/dg, must
be some constant m. Integrating this partial differential equation we find T to be &
homogeneous quadrati¢c function of ¢,"—mgqy, ¢4, &e. It would, therefore, be possi-
ble to set the system in motion, with values of ¢,’ and g, which are not zero, and
yet so that the system is without vis viva.

Ex. 5. In any dyhamical system if the co-ordinates g,, ., g3 and their corre-
sponding momenta p,, P,, ps be expressed in terms of their initial values and the
time elapsed, prove that the Jacobian of p;, p, ps, 4;, 45 s With regard to their
initial values is equal to unity. : )

Ex. 6. A system whose co-ordinates are g,, g,, &o. is making small oscillations
about a state of steady motion determined by ¢,=0, ¢,=0, &e. The Lagrangian
function, as in Art. 111, is given by L=L,+ £4q + L,, where L, is a homogeneous
function of the second order of the co-ordinates and their velocities. Prove that

8=Lq(t-1)+24 (¢~ a) +} [ZqdL,/dq],
where the last term is to be taken between the limits t, and ¢t. Here the in-
tegrations have been effected, but in order to express S (Art. 463) as a function of
the co-ordinates we must finally substitute for ¢’ and a’ in terms of these quantities.

Ex. 7. The position of a system making small oscillations as in Ex. 6 is
defined by one co-ordinate g, so that

L=Lo+4,¢' +34,4" +3Cng*+ Ga9’,
where the coefficients are all constants. Prove that when ¢,=0

S=Lot+ 41 (g -a) + Gy (¢ - o) + ymay, CHOUTEET) - e
where m?=C},/4,,. :

468. Hamilton’s Differential Equations. By the pre-

ceding reasoning all the integrals of a dynamical system of equa-
tions can be expressed in terms of the differential coefficients of
a single function. But the method supplies no means of discovering
this function @ priori. We shall now show that this function
must always satisfy a certain differential equation, so that the
solution of all dynamical problems may be reduced to the inte-
gration of one differential equation. '
"~ Let us for the sake of brevity, suppose that the geometrical
equations do not contain the time explicitly. We have then
H=T-U To construct this differential equation we must find
the reciprocal function of 7'— U, according to the rules given in the
first volume of this treatise. Let

2T=A,q,"+24,9/¢/+ ...
R.D. IL 17
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We now put dT/dg,=p,, dT/dg, =p,, &c. and eliminate from T
the velocities ¢, g,, &c. 80 a8 to express 7' as a function of the
co-ordinates and momenta alone. As explained in the first volume,
we arrive at the result

0 P Py
pl An Au"’

where A is the discriminant of T. The reciprocal function of
T- U is therefore H=T,—U. Thus H is a quadratic function
of the momenta p,, p,, &. We may shortly write this in the

form H=}B p'+B,pp,+..-U

1
T’=-2—K

But p,=dV/dg,, p,=dV/dq,, &c. and the equation of vis viva
givesp}I =h. dﬁe&e Vmust’sa.tisfy the equf&on
dvy* av av
B,(5-) + By 57 +&e.=U=h............ .
: “(dql) P dg, 3g, ®

In just the same way p,=dS/dg,, p,=dS/dyq,, &c. and H =—dS/dt.
Hence S must satisfy the equation '

dSy\' dS ds8 - d8

iB“ (@l) +B“J—ql d—q.-l-&c.— U=- Td? ............... (II).

Here the coefficients B, B,,, &c. are all known functions of the
co-ordinates ¢,, ¢,, &c.

We have supposed ¥ to be expressed as a function of the
co-ordinates at the time ¢, the initial co-ordinates and the energy
h. But in this equation we may also regard ¥ to be a function of
the co-ordinates at the time ¢, the energy 4, and as many arbitrary
constants as there are co-ordinates. In this case these constants
are really functions of the initial co-ordinates which we do not
care to determine. The equations giving the momenta p,, p,, &ec.
at the time ¢ as the differential coefficients of ¥ with regard to
q,, 9,, &c. will still be true; but the equations expressing the
initial momenta are supposed not to be wanted.

If we take as these constants the actual co-ordinates at any
epoch ¢ = ¢, we may form another equation of a form similar to (L)
with a,, a,, &c. written for ¢,, ¢,, &c. and ¢, for ¢. It is then
necessary that ¥ should satisfy both these equations.

Summing up, we may form the Hamiltonian equation (I.) by
the following process. We first write down the equation of vis viva,
viz. T—U=h. We next form the reciprocal function of the lefi-
hand side. To do this we differentiate the left-hand side with
regard to the velocities ¢, ¢,, &c. and equate the results to the
momenta p,, p,, &c., we then eliminate the velocities. Lastly we
write for the momenta in the reciprocal function the differential
coefficrents of V with regard to the co-ordinates q,, q,, &ec.
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469. Jacobi’s complete Integral. We thus have, in
general, a partial differential equation to find ¥V or 8. This
equation admits of many forms of solution, but Sir.W. R. Hamilton
gave no rule to determine which integral ts to be taken. This
defect has been supplied by Jacobi in the following proposition.

Let there be n co-ordinates in the system.

Suppose a complete solution to have been hfound containing n —1
constants (besides h) and the constant which may be tntroduced by
simple addition to the function V. These constants need not be the
2natial values of q,, q,, &c., but may be any constants whatever. Let
them be denoted by a,, a,...qa,_, 8o that

V=F(qy gs-e- Gu Oy Tgeee B )+ 0y evrennnannes 1).
Then the integrals of the dynamical equations will be

af _ af _ af _

(71—1—31’ &e. 'da—H—B”_., ‘7}"—‘"'6 ............ (2),

where B,, B, ... B._, and € are n new arbitrary constants, and the

1

Jirst integrals of the equations may be written in the form

df _dT df _dT &o. = &e 3
dg, dg,’ dg, dg,”’ ®
It appears from Jacobi’s proposition that any integral provided
it is complete* will supply a solution to the dynamical problem.
‘We have also a sufficient number of constants, viz. a, ...a,_,, h, €
and B, ... B, to satisfy any initial conditions.

470. To prove these results, we must show that if the form
of V given by (1) satisfies identically the equation
H=4}B,p'+ B,p,p,+ ...~ U=h......... .. @0,
where p stands for d¥V/dg, then the relations (2) will satisfy iden-
tically the two typical Hamiltonian equations
dH _ , dH _ ,
% =q, - -@ TP ceccvccncscesncnns (II).
It will immediately follow, since H and I'— U are reciprocal func-
tions, that the relations (2) will also make

Since (I.) is identically satisfied, we may differentiate it partially

* An integral of a partial differential equation has been called by Lagrange
«complete,” when it contains as many arbitrary constants as there are independent
variables, It is implied that the constants enter in such a manner into the inte-
gral that they cannot by any algebraic process be reduced to a smaller number.
For instance, if two of the constants enter in the form a, + a,, they amount on the
whole to only one,

17—2
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with regard to each of the n constants @,...a,_ and . We thus

obtain, after substitutign from (1), n — 1 equations of the form
aH dp, , dH dp,
dp, da "~ dp, da

and an nth equation derived from this by writing A for a and

unity for the zero on the right-hand side. We shall use these =

equations to find dH/dp,, dH/dp,, &c.

But if we differentiate Jacobi's integrals (2) with regard to ¢
we have n — 1 equations of the form
da, &F 44, T o,

dt dadg, * dt dadg,

and an nth equation derived from this by writing A for a and
putting unity on the right-hand side. 'We shall use these » equa-
tions to find dg/dt,, dg,/dt, &e. _

Comparing these two sets of equations, we see that when we
substitute for the typical p its value derived from p = df/dyg, the
equations become identical. Hence,

aH_dg, dH_dg, o
dp, dt’ dp, dt ‘
Again, if we differentiate the identical equation (I.) with regard
to each of the co-ordinates ¢, ... g, in turn, we obtain after sub-
stitution from (1) the typical equation
dH dHdp, A dH dp,
ey = hiy =0,
dg ~ dp, dg " dp, dg ,

. _dH _dg, &f  dg, &

dq  dt dg,dq " dt dq,dg

But since p = df/dg, the right-hand side is the same as dp/dt, we

therefore have
_dH_dp, _dH_dp, .
dg, " de’ Tdg dt’ %

471. Geometrical Remarks. To simplify the argument let us suppose that
the dynamical system depends only on two co-ordinates ¢;, ¢ The Hamiltonian
equation (L) therefore takes the form

dv\32 av dv av\?
1By (dﬁ) Ydg, dg, 1By dq,

Let us suppose that a complete integral has been found, viz.

V=f (21 Qg @)+ @g eeevvennriiivennneieininincnennnnns 2).

Regarding ¢,, g; and 7' as the Cartesian co-ordinates of a point P, this is the
equation to a double system or family of surfaces. Let us select any family we
please, so that the constants a), a; are now related by some equation ay=y (a,).

- The characteristios of this chosen family are given by . .
- V=fay qp @) +¥ (“1)}
0=df/da, +dy/da,
where q, i8 regarded as a constant. -

+...=0,
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The general integral is obtained by eliminating «, between the two equations (8).
Here aq, in the first equation is to be regarded as a function of g,, g, determined by
the second equation. This of course is merely following Lagrange’s rule to find the
general integral when any complete integral is known.

In the same way we find that Lagrange’s singular solution is at infinity.

It appears from this that all the characteristics of all the families of surfaces
included in the complete integral (1) are used to build up the general integral. We
choose any set of characteristics we please 8o that a surface can be made to pass
through every member of the set. This surface is a particular case of the general
solution,

472, According to Jacobi’s theorem the path of the dynamical system is defined
by dff/da,=g,. Looking at the second of equations (3) we see that this is equivalent
to asserting that dy/da, and therefore a, is constant. It follows.that the possible
paths of the dynamical system are the characteristics of the families which may be
chosen out of the complete integral.

473, BSince Lagrange’s method of finding the general integral will give.a solu-
tion whatever the form of Y (a,) may be, we may use that process to obtain other
complete integrals. If we write ¢ (m, a,) +n for ¥ (a,) and proceed to eliminate a, we
obtain a solution which contains two constants, viz. m and n, and is therefore a
complete integral. Here ¢ may be any function we please, and a, is to be regazded
as a fanction of ¢,, g, determined by the second of the equations (3).

The paths derived from this new complete integral by Jacobi’s method are
given by (df/day + dy|da;) day/dm + dy|dm=p.

By the second of equations (3) the term in brackets is zero. The path therefore
is defined by equating to a constant a function of ;, and m. The paths are there-
fore given by equating a, to a constant. It follows that the two complete integrals
Lead to the same set of dynamical paths. :

474. If the Hamiltonian equation
3By, (dV/dg,)* + Byg (dV]dg,) (dV[dgs) + By (AV ]dga)*= U+ k
be such that all the coefficients on the left side and also U are functions of one co-
ordinate only, say g, then a complete integral can be found by writing V=W + a,q,,
where W is a function of g, only. Substituting this in the Hamiltonian equation
we have a differential equation with one independent variable viz. g, The solution
of this can be effected by the ordinary method of separating the variables. Thus
we easily find by solving a quadratic that dV/dq, is a known function of ¢, and a,.

Integrating this we have a value for ¥ with one additional constant. This there-
fore is a complete integral.

475. Bxamples. Ex. 1. Taking the same problem as in Ex. 1 of Art. 467,
show that Hamilten’s differential equation V is % (d¥V/dg)*~gg=h. Integrate this
equation and thence find the motion.

Ex. 2. Let us next consider & more complicated case in which there are two co-
ordinates. The simplest example we can take is that of the motion of a projectile
under the action of gravity.

If q), g3 be its co-ordinates the equation of vis viva may be written
3(¢9y2+ 95%) =- gq5+ k. Following the rule of Art. 468 we see that the Hamiltonian
equation is } (dV/dq,)? + § (dV/dg.)?=~ gq,+h. To solve this we notice that all the
coefficients on the left side are constants and that U is a function of g; only. By
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Art. 474 we therefore assume V=W 4 a,9,. Bubstituting and integrating we find
W, 2o that finally V=aq, - % (A -a,-2gg ) +
Following Jacobi’s rule (Art. 469) the motion is given by
dV/dey=g,+2 (3h- o7 - g )b=p }
avidh= --2 (@h-a2—gg)h=t+e)

These easily reduce to the ordinary formuls for the motion of & projectile,

Ex, 8. A particle describes an orbit about a centre of force which atiracts
aocording to the law of nature, If r, @ be its polar co-ordinates referred to the
centre of force as origin, show that the Hamiltonian equation is

(2V]dr)*+(d V[rd8)*=u/r + 2A,

Show also that a complete integral may be found (as in the last example) by
putting V=W +af.

476. Jacobi has extended his theorem to the case in which the geometrical
equations do contain the time explicitly, But for this we have no space. We can-
not also do more than allude to Professor Donkin’s theorem that a knowledge of
half theintegrﬂso“heﬂamﬂtoniancynemwﬂlinoerhinmludtosdetermi-
nation of the rest.

In Boole's Differential Equations it is shown that when the Hamiltonian equa-
tions are four in number, and one integral besides Vis Viva is known, both the
remaining integrals can be found by integrating an exact differential equation.
Miscellaneous Exercises, No. 15.

Variation of the Elements.

477. Let the integrals of a dynamical problem be

6=/ (P1 91 P» qar - ¥) .
Ca=Ffa(P1y @1y Pas Qas oo+ ) vvrevniirnnncnnniicinnnenanns 1),
&e.=&ec. {
where p, g, ... are some variables which determine the position and motion of the
system, and which are such that the equations of motion may be written in the

,_ dH , dH
forms p'=- i’ g == @p e (2),
in the Hamiltonian manner. Let the equations of motion of a second dynamical
.__4H dE , dH dK

problem be =—— -

where K is some function of p, g, ... 2. If we consider c,, ¢,, ... the constants of the
solution of the first problem to be functions of p, ¢, and t, we may suppose the
solution of the second problem to be represented by integrals of the same form
(1) as those of the first problem. It is therefore our object to discover what func-
tions ¢y, ¢, ... are of p, g, and t. The function K is called “the disturbing func-
tion,” and is usually small as compared with H,

Since the equations (1) are the integrals of the differential equations (2), we
shall obtain identical expressions by substituting from (1) in (2). Hence dif-
fmnhatmg (1), and substituting for p’ and ¢’ their values given by (2), we get

dey dH | dey dH de,
0= dp dg+dq dp+ R ; ........................ 4).
0=¢&e,
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But when c,, ¢, ... are considered as variables, the equations (1) are the integrals

of the differential oquahons (3). Henoe repeating the same process, we have
de,  _doydH  deydH ~ de, de, dK de, dK

a @ g Tdq 4 + d‘ dpE+d_q—@+ ......

where the differential coefficients on the left-hand side are total, and those on the
right-hand side partial.
Hence, using the identities (4), we get
de,__de, dK | de, dK
'E‘— dP dq dq + ........................... (5-),

with similar expressions for 2’, &eo.’

If K be given as a function of p, q, dc. and t, we have de,/dt, &o. expressed as
functions of p, ¢, &c. and ¢. Joining these equations to those marked (1) we find
€35 €, ... 88 functions of ¢, ‘

If K be given as a function of ¢,, ¢, ... and t we may continue thus,

dE _dK do,  dK dey dE _dRdo, dKdey
dp deydp degdp ! dg ~deydg dc,dq N

Substituting in the expression for =1, we get

aap dpdglac,"*Ldg i "o g e,
‘where the Z means summation for all values of p, g, viz. p,, ¢;, P, g2, &C.

Since by hypothesis ¢,, ¢,, ... are supposed expressed as functions of p,, ¢,, &e.
and ¢, these coefficients may be found by simple differentiation. It will, of course,
be more convenient to express them in terms of c,, ¢c5, &e¢. and ¢ by substituting
for p,, q,, &o. their values given by the integrals (1).

_,=z[dc,dc, de, de, dK de,dey de, deg|dK

478. On effecting this substitution it will be found that t disappears from the

expressions. This may be proved as follows. Let A be any coefficient, so that
_ g [deidey deyde, . .
A—Z[dq . dpﬁ—q'] , We have o prove that 4 being regarded as a function
of p), ¢;, &c. and ¢, the total differential coefficient d.4/dt is zero. Now
d.A_dd dd a4
Tt —attapPtagtt

The letters p;, q,, &ec. enter into the expression for A only through ¢; and ¢,.
Let us consider only the part of d.A/dt due to the variation of ¢,, then the part due
to the variation of ¢, may be found by interchanging ¢, and ¢, and changing the
sign of the whole. The complete value of d.4/dt is the sum of these two parts.

The part of d. 4/dt due to the variation of ¢, is
g[des{d dey e, dH  dPeydH z ___,%__ _ @ dH | Po dH }]

dp ldg d¢ ~ dpdq dq " dg* dp dg \dp dt ~ dp* dg ~ dpdq dp

If we substitute for dc,/d¢ its value given by the indentity (4), we get

dey (dey PH _dey &*H )  de, {dey d°H _ de, d’H% ]
dp ldp dg* ~ dgq dpdq) ~ dq dp dpdg ~ dg dp®

If we now interchange ¢, and ¢, we get the same result. Hence when the two

paris of d . A/dt are added together, the signs being opposite, the sum is zero.
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dey dey _ dey de,
479. Let the b A [l Jond
expression ddp dp dg
tion for all the values of p, g, be represented shortly by (c,, ¢;). Then in any
dynamical problem if K be the disturbing function, the variations of the parameters
€1 ¢y, ... 80 given by

], vhuo.theZmemsrsumma-

A g e g
where all the coefficients are fanctions of the parameters only and not of ¢t.

This equation may be greatly simplified by a proper choice of the constants
€, €y ... In the Mécanique Analytique of Lagrange, it is shown that if the con-
stants ohocen be the initial values of p,, p,,... and ¢, q,,..., Viz. @, 8, 7, ... and
A\, &, », ... respectively, then the equations become

do_ dK df__dK

T L TR P

D_ A du_ ak
dt~ da’' dtes as ! -

1t is assumed in the demonstration that K is a function of g,, ¢y, ...only. This
simplification has been extended by Sir W. Hamilton and Jacobi to other cases, but
for this we have no space,

480. It follows from the investigation in Art. 478, that if two integrals of a
dynamical problem be found, viz. 0,=a, cy=0, where ¢, and c, stand for some
Junctions of py, q;, Py 43, ... and t, and a and B are constants, then (c,, o) is also
constant. Bo that (c;, c;)=%, where y is a constant, is either a third integral of
the equations of motion or an identity. If it is an integral it may be either a
new integral or one derivable from the two ¢; and ¢, already found.




CHAPTER XI.

PRECESSION AND NUTATION,
&e. &e.

On the Potential.

481. To find the potential of a body of any form at any
external distant point.

Let the centre of gravity G of the body be taken as the origin
of co-ordinates and let the axis of « pass through S the external
point. Let the distance GS=p. Let (z,y, 2) be the co-ordinates
of any element dm of the body situated at any point P and let
QP =r, then PS*=p*+ 1" —2px. The potential of the body is

_sdm o gdm 20z — r") -t
v=3gE o V=37 {1- - r'}
dm 12pz—7* 3 (2pz—7"\* 5 2pa:—r’)’ 35 (2pz—1"\* .
T{1+§ Pg +§( Pg )+1_6'( Pi +m( P’ _)+-n},
arranging these terms in descending powers of p, we get

. —at - A )
V=E¢1Ln{1+._q_:+3a:’ ’r +5a,’ :;}a:r' 85x 30a;"1"+3r +...}.
P P2 2p 8p

Let M be the mass of the body, then Jdm =M. Also since the
origin is at the centre of gravity, we have Zzdm = 0.

Let A, B, C be the principal moments of inertia at the centre
of gravity, I the moment of inertia about the axis of #, which in

our case is the line joining the centre of gravity of the body to
the attracted point. Then

Sdmr=3(4+ B+ O),
Sdma* =Sdm(P —y' —#)=4(A +B+C)—1I

Let I be any linear dimension of the body, then if p be so
great compared with I that we may neglect the fraction (I/p)* of
the potential, we have

y M, 4+B+0-31
p T 2.
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If we wish to make a nearer approximation to the value of ¥,
we must take account of the next terms, viz.

53mz’ — 3Zmar*
2p* :

Let (£ 9, ¢) be the co-ordinates of m referred to any fixed

rectangular axes having the origin at G, and let (a, 8, ¢) be the
angles GS makes with these axes. Then

a=F§cosa+ncos B+ {cosy;
s Ema® =cos*aSmE + 3 cos’acos BImEn + ......

If the body be symmetrical about any set of rectangular axes
meeting at G, we have Imf* =0, Zmf'n =0, &c.=0, so that this
next term in the expression for the potential vanishes altogether.
Thus the error of the preceding expression for V is comparable
to only the fraction (//p)‘ of the potential. This is the case with
the earth, the form and structure of which are very nearly sym-
metrical about the principal axes at its centre of gravity.

This theorem is due to Poisson, but it was put into the convenient form just
given by Prof. MacCullagh. See Royal Irish Transactions for 1855, page 887.

482. In the investigation of this value for the potential, S
has been supposed to be at a very great distance. But the ex-
pression is also very nearly correct wherever the point S be
situated, provided the body is an ellipsoid whose strata of equal
density are concentric ellipsoids of small ellipticity.

To prove this, we may use a theorem in attractions due to
Maclaurin, viz. The potentials of confocal ellipsoids at any ex-
ternal point are proportional to their masses. Let us first con-
sider the case of a solid homogeneous ellipsoid. Describe an
internal confocal ellipsoid of very small dimensions and let a/, ', ¢
be its semi-axes. Then because the ellipticity is very small, we
can take a, b’, ¢’ so small that S may be regarded as a distant
point with regard to the internal ellipsoid. ﬁznce the potential
due to the internal ellipsoid is

V’=L—I+A +B’+’(J7 31
P 2p
where accented letters have the same meaning relatively to the
internal ellipsoid that unaccented letters have with regard to the
given ellipsoid. The error made in this expression is of the
order (a'/p)*V". Hence, by Maclaurin’s theorem, the potential ¥
of the given ellipsoid is

M M A+B+C—3T
V—_— F'I-M: _'T-—,

and the error is of the order (a’/p)* V.

)
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If a, b, ¢ be the semi-axes of the given ellipsoid, we have
a—a’=b'-b"=c"-c"=\;

g bEd et 2N M, 2
A=Y _M( +3x) A+

5 M
.4
MI

Also if (a, B, ) be the direction-angles of the line GS with
reference to the principal axes at (¢, we have

o e _M , 2 [ —_ 4 2 ]
Similarly, B—JTI'B +3M)\., C=5C +5MX.

I=A cos’a + Bcos'B + C cos’y= %I# %MX’.

Hence, substituting, we have

pod, ArBLo-AL
P 2p

If a, b, ¢ be arranged in descending order of magnitude, we
can by diminishing the size of the internal ellipsoid make ¢’ as
small as we please. In this case we have ultimately a' = Ja =
Let e be the ellipticity of the section containing @ and c¢ the
greatest and least semi-axes. Then a’=a/2¢, and the error of
the above expression for V is of the order 4 (a/p)* €'V.

The theorem being true for any solid homogeneous ellipsoid
is also true for any homogeneous shell bounded by concentric
ellipsoids of small ellipticity. For the potential of such a shell
may be found by subtracting the potentials of the bounding
ellipsoids, 4 + B+ C (see Vol. 1.) being independent of the direc-
tions of the axes.

Lastly, suppose the body to be an ellipsoid whose strata of
equal density are concentric ellipsoids of small ellipticity, the
external boundary being homogeneous. Then the proposition
being true for each stratum, is also true for the whole body.

This theorem was first given by Prof. MacCullagh as a problem, and was pub-
lished in the Dublin University Calendar for 1834, page 268. Some years after,
about 1846, he gave his proof of the theorem in his lectures, which is substantially
the same as that given in this Article. See the Transactions of the Royal Irish
Academy, Vol. xxm1., Parts 1. and 11., Science.

483. The following geometrical interpretation of the formula of Art. 481 is
also due to Prof. MacCullagh. His demonstration and another by the Rev. R.
Townsend may be found in the Irish Transactions for 1855.

A system of material points attracts a point 8 whose distance from the centre
of gravity G of the attracting mass is very great compared with the mutual
distances of the particles. If a tangent plane be drawn to the ellipsoid of gyration
perpendicular to GS, touching the ellipsoid in T and cutting G8 in U, then the
resultant attraction on 8 lies in the plane SGT. The component of the attraction
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on B in the direction TU:-EGU . UT. The component of the attraction on

M 8 A+B+C 81
8 in the direction UG_P’ +3 P
These theorems are also true if we replace the ellipsoid of gyration by any
confocal ellipsoid. Let a, b, ¢ be the semi-axes of this confocal, and let p be the
perpendicnlu GU on the tangent plane. Bince (see Vol 1.), A =Ma?+\, B=Mb*+),
&o. where \ is some constant, we have V—y M(a®+ b2+ ch - 3p7) b;; %%
To prove that the resultant force on S lies in the plane SGT, let us displace
S to 8’ where SS' is perpendicular to this plane and is equal {o pdy. Because ¥V is
a potential, the force on S in the direction S8’ is dV/pdy. But after this displace-
ment the tangent plane perpendicular to GS’ intersects along T'U the former tangent
plane, hence dp/dy =0, and ... dV/dy=0.
To find the force P acting at S in the direction 7'T, let us displace S to S” where

L

SS” is parallel to 7'U and is equal to pdy. Since GU is perpendicular to UT we
have, exactly as in the Differential Calculus, 7U=dp/dy. Hence
1dv 3M
P=-==_"y TU.
pay~ 7
Lastly, to find the force R in the direction SG we have
R= g_lf M+3A+B+C 3I
T A2 f
Ex. Show that the prodact GU . TU is the same for all confocals.

484. Bxamples on attractions. Ex. Let GP be a straight line through the
centre of gravity such that the moment of inertia about it is equal to the mean of
the three principal moments of inertia at G, then the resolved attraction of the
body on any point S in the direction SG is more nearly the same as if the body
were collected into its centre of gravity when S lies in GP, than when S lies in any
other straight line through G.

Show also that the moment of inertia about GP 'is equal to the mean of the
moments of inertia about all straight lines passing through G.

If two of the principal moments of inertia are equal, prove that GP makes with
the axis of unequal moment an angle equal to cos™ (1/4/3). .

485. Bqui-attractive bodies. Ex. 1. If two bodies exert equal attractions on
all .external points, prove that their centres of gravity must coincide and their
masses must be equal. The principal axes at their common centre of gravity must
be coincident in direction, and the difference of their moments of inertia about any
straight line constant.

Ex. 2. Thence show that two Chaslesian shells of the same body have the
same principal axes at their common centre of gravity and the dlﬁerenee of their
-moments of inertia about any straight line constant.
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Ex. 3. If the attraction of a body on every external point be the same as that
of a single particle placed at some point, then the mass of the particle is equal to
the mass of the body, the point is the centre of gravity; also the law of attraction
must be either as the inverse square of the distance or as the direct distance, and in
the former case every axis through the centre of gravity is a principal axis at the
centre of gravity. See a paper by the anthor in the Quarterly Mathematical
Journal, 1857, Vol. 11. page 136.

Ex. 4 Let an ellipsoid be described having its semi-axes a, b, ¢ such that
M32a2=B4+C-A+\ MIB¥=C+A—-B+\, M$c*=A+B-C+)\, where \ is at
our disposal, and may be any quantity positive or negative which does not make
a, b, ¢ imaginary. Let an indefinitely thin shell of mass M be constructed
bounded by similar ellipsoids and having this ellipsoid for one bounding surface.
Then the attractions of the given body and this shell on any distant external point
are the same in direction and magnitude.

The attraction of such a shell on any external point is normal to the confocal

through that point and is equal to EIE'P , where o', b/, ¢’ are the semi-axes of the

confocal and p’ the perpendicular on the tangent plane at the attracted point. See
a paper by the author in the Quarterly Journal of Pure and Applied Mathematics,
1867, Vol. vt page 322.

Ex. 5. The attraction of a body two of whose principal moments at the centre
of gravity 4 and B are equal and greater than the third attracts & distant point as
if its mass M were equally distributed over a straight line of length 2I, where
BM1%2=3 (4 - C), placed perpendicular to the plane of 4, B with its middle point at
the centre of gravity. This proposition is accurately true if the body be an indefi-
nitely thin shell bounded by similar prolate spheroids. In any case it is necessary
that the equal moments 4, B should be greater than the third moment of inertia C.

Ex. 6. Whatever be the relative magnitudes of the three principal moments
of inertia, the attraction on a distant point is the same as if the mass was distributed
over the focal conic of the ellipsoid described in (4) so that the density at any point
P is proportional to 4B/(4P . PB)}, where 4B is the diameter through P,

Ex. 7. The attraction of any body of mass M on a distant particle may be
found in the following manner, Let an indefinitely thin shell of muss 3M be
constructed bounded by similar ellipsoids and having the ellipsoid of gyration at
the centre of gravity for one bounding surface. Also let a particle of mass 4} be
collected at the centre of gravity. Then the attraction of M on any distant
particle is the same in direction and magnitude as if 43 attracted it and 3M
repelled it.

Other laws of attraction. Ex. 8. If the law of atiraction had been — ¢ (dist.)
instead of the inverse square, the potential of a body on any external point S
would have been represented by Zm¢, (PS), where ¢ (p) is the differential coefficient
of ¢, (p). In this case, by reasoning in the same way as in Art. 481, we get

A+B+C d .
V=t o0 -5 2 (20,

where 4, B, C and I have the same meanings as before.
If (¢, ¥, #) be the co-ordinates of S referred to the principa.l axes at G, the

moment of the attraction of S about the axis of yis —-p @ ¢(P ) (C-A)x7.
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486. To find the Force-function due to the attraction of any
body on any other distant body.

Let @, @ be the centres of vity of the two bodies, and let
G@F=R. Let A, B,C; A', B, C’ be the principal moments of .
inertia of the two bodies at G and @' respectively; I, I’ the
moments of inertia about G'G', and let M, M’ be the masses of
the two bodies.

Let m’ be any element of the body M’ situated at the point S,
and let GS8=p. Then the potential of the body M at m’ is

(M, A+B+ 0-31&

p 25" where I, is the moment of inertia of
the body M about @S. We have now to sum this expression for
all values of m'. This gives
M3™ LS ﬁit.o__gﬂ .
P 2p
The first term by the same reasoning as before gives -

MM A+B+0-3I

) +M o .

In the second term, let 2’, 3, 2’ be the co-ordinates of m'
referred to @ as origin. Then

p=R (1 + %+squares of &', ¢, z’),
I,=I(1 +ax + By + 2 +squares),

where a, B, 4 are some constants. Substituting these, and re-
membering that Zm'z’ = 0, Sm'y’ =0, Zm’z' =0, we get
M A+B+C-31 terms depending on the)
11+ , , .
2R’ ( squares of &, y, 2
Hence the required force-function is
MM A'+B+C-3rI ,A+ B+C-3I
V_ R +M 2R’ +M h— 2'-Ra" .
The error of this expression is of the order (II'/R*)'V, where

l, I' are any linear dimensions of the two bodies respectively.

487. Moment of the Sun’s force. 7o find the moment of
the attraction of the sun and moon about one of the principal axes
of the earth at its centre of gravity.

Let the principal axes of the earth at its centre of gravity be
taken as the axes of reference, and let a, 8, ¥ be the direction-
angles of the centre of gravity G’ of the sun. Then if ¥ be the
potential of the sun or moon on the earth, we have

MM L A+B+C-3I' ., A+B+C-3I
V= R +M R +M oR® s
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where unaccented letters refer to the earth, and accented letters
to the sun or moon. Let @ be the angle the plane through the
sun and the axis of y makes with the plane of zy, then dlg/dG is
the required moment in the direction in which we must turn the
body to increase . From the above expremon, gsince 6 enters
only through I, we have

dv_ 3Mdl
dd~ 2R df°
Now I =A4 cos’a+ Bcos'B + Ccos'y, and by Spherical Trigo- ,7_
nometry, we have g4 ZYS A XYSs
cos y = sin B 8in 6, cosa=sinBcosf; /
. Z—g=—_2(A—C’)sin’Bsin0cosﬂ; < )y
*. the moment required

MI
about the axis of y } =-3 T’ (C~ A)cosacosy.

In this expression the mass of the attracting body is measured
in astronomical umts. We may eliminate this unit in the follow-
ing manner. Let n' be the mean angular velocity of the sun
about the earth, R, its mean distance, 80 that if M be the mass
of the earth, we have (M’'+M)/R*=n" Now M is very small
compared with M ’, so small that M/M’ is of the order of terms
already neglected. Hence we may in the same terms put
M'/R} =n" and therefore

the moment of the sun’s at-] _ . ' R.)'
t.raction about the axis of y} == 3n%(C—4) cosacosy (ﬁ ’

Let n” be the mean angular velocity of the moon about the
earth, so that, if M” be the mass of the moon, R, the mean
distance we have (M”"+ M)/R'}=n". Let v be ‘the ratio of the
mass of the earth to that of the moon, then M” (14 »)/R'} =n",
and therefore if R’ be the distance of the moon’

the moment of the moon’s at- - 3n ( C'— A) cosacos R, )'
traction about the axis of y 7 (R’ '

In the same way the moments about the other axes may be
found. Putting & for the coefficient, we have

moment about axis of £ =— 8« (B—C) cos B cosvy,
moment about axis of z=—3x(4 — B) cosa cos 8.

488. Bxamples. Ex. 1. The force-function between a body of any form and
a uniform circular ring whose centre is at the centre of gravity of the body and
whose mass is M’ is V_M——M- M’A—"'BT’;,@—I,
where J is the moment of mertm of the body about an axis through its centre of

gravity perpendicular to the plane of the ring, and 4, B, C are the principal
moments of inertia at the centre of gravity.
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Thenoe show that Saturn’s ring supposed uniform will have the same moments |
to turn Saturn about its centre of gravity as if half the whole mass were collected
into a particle and placed in the axis of the ring at the same distance from Saturn,
provided the particle repelled instead of attracted Saturn,

Ex. 2. If the earth be formed of concentric spheroidal strata of small but
different ellipticities and of different densities, show that the ratio of C to 4 may be
found from the equation C/fpd (a®)=(C - 4)/pd (a®), where ¢ is the ellipticity and p
the density of a stratum, the major-axis of which is a; the square of ¢ being neg-
lected. It follows that if ¢ be constant, the ratio of C to 4 is independent of the
law of density.

If wo assume the law of density and the law of ellipticity given in the Figure

of the Earth, this formula gives C;'I—,A=‘00313593. See Pratt’s Figure of the

. Earth,

Ex. 8. A body free to turn about a fixed straight line passing through the

centre of gravity is in equilibrium under the attraction of a distant fixed particle.
]

Show that the time of a small oscillation is 2% {BTI’E{(TB—’:—M} , where the
fixed straight line is the axis of y, the plane of zy in equilibrinm passes through the
attracting particle, and £, 5 are the co-ordinates of the particle. Also4,B,C, D, E, F
are the moments and products of inertia of the body about the axes. If the straight
line did not pass through the centre of gravity show that the time would be propor-
tional to p.

Motion of the Earth about its Cenire of Grawity.

489. To find the motion of the pole of the earth about its
‘centre &Z gravity when disturbed by the attraction of the sun and
moon, the figure of the earth being taken to be one of revolution.

Let us consider the effect of these two bodies separately.
Then, provided we neglect terms depending on the square of
the disturbing force, we can by addition determine their joint
effect.

The sun attracts the parts of the earth nearer to it with a
force slightly greater than that with which it attracts the parts
more remote, and thus produces a small couple which tends
to turn the earth about an axis lying in the plane of the equator
and perpendicular to the line joining the centre of the earth
to the centre of the sun. It is the effect of this couple which
we have now to determine. It clearly produces small angular .
velocities about axes perpendicular to the axis of figure. We
shall also suppose that the initial axis of rotation so nearly coin-
cides with the axis of figure, that we may regard the angular
velocities about axes lying in the plane of the equator to be small
compared with the angular velocity about the axis of figure.

Let us take as axes of reference in the earth, GC the axis
of figure, GA and GB moving in the earth with an angular
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velocity 6, round GC. Then following the notation of Art. 16,

we have k/=Ao, h'=Aw, bh'=Ceo,
0= o, 60,= o,
The equations of motion are therefore
A'% — 4o, + Co0,=L
R T Y XS 4 —— Q).
dw, _
C 7 ' =0

The last of these equations shows that e, is constant. Let
this constant be denoted by =. o

The other two angular velocities are to be found by solving
the other two equations. This solution must be conducted by
the method of continued approximation, w, and w, being regarded
as small compared with n.

In the first instance let us suppose the orbit of the dis-
turbing body to be fixed in space. This is very nearly true
in the case of the sun, less nearly so for the moon. This limi-
tation of the problem proposed will be found greatly to simplify
the solution. We can now choose as our axes of reference in
space two straight lines G@X, QY at right angles to each other
in the plane og the orbit and a third axis GZ normal to the
plane.

490. In these equations of motion the.quantity 6, is at
our choice, let it be so chosen® that the plane containing the

* We lﬁight also very conveniently have chosen as axes of reference, GC the
axis of figure and axes G4’, GB’ moving on the earth so that GB'is the axis of

R D. IL 18
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axes GC, GA also contains GZ. Then 6, is the angular velocity
of the plane ZGC round GC. If w, and o, were zero, and
the earth merely turned round its axis GC, it is clear that

GC and therefore also the plane ZGC would be fixed in space.

Hence 6, is a small quantity of the same order at least as w,
or ,. For a first approximation we neglect the squares of the
smalf quantities to found. We therefore reject the small
terms 0,0, »,0, in the equations (1). The equations now become

4% 4 Ono,=1
- cerrveeeeesesesseens d2).
—2 =

4% One, =21

Following the usual notation let 6 be the angle ZC and

the resultant couple produced by the action of the disturbing body on the earth.
In this case the plane C4’ moves 80 as always to contain the disturbing body S,
. 80 that 6, is the angular velocity of CS round C and is therefore a small quantity of
the order . We shall therefore reject the small terms w0, and «,0, in equations
(1). The equations now become
A%“FC’;@,:O
A%—Cﬂq:M:—Bx(C—A)cosacos'y
where the value of M is at once obtained from Art. 487, and in our case a=}wr—1.
. e .. d*e 2 n
Eliminating w, we have —d?1+ (EA!) q=—%lf.
Since the angular distance < of the disturbing body from the pole of the earth
varies very slowly, the term on the right-hand side is very nearly constant. If
this be regarded as a sufficient approximation we have
_8&C-4
“Tom G
But in fact these are nearly true when we take account of the periodical term
provided only S moves slowly. For suppose
M=M,+ 2P sin (pt + Q)
where p is small ; we have in that case

_ M, P
== G~ % G- 2 S0 P+ Q)

sin 2, and w,=0.

neglecting the small term p2 in the denominator we have as before wl=-gl.

The motion of the axis C in space is therefore simply that due to an angular
velocity w, about the axis 4’. Since the plane 4’C moves so as always to contain
the disturbing body S, the axis of figure GC is at any instant moving perpendicular
to the plane containing it and the disturbing body (i.e. in the figure C is always
moving perpendicular to SC) with an angular velocity equal to ‘;—’; C—;A sin 2y, If
we resolve this in the direction along and perpendicular to ZC we easily deduce the
equations (7) in the text and the solution may be continued as above.
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4 the angle the plane ZC makes with the fixed plane ZX. We
have then the two geometrical equations
. ad do
wl=—sm0d~4;, Wy = e (3).

These follow at once from a mere inspection of the figure, or
we may deduce them from Euler's geometrical equations (see
Vol. 1.) by putting ¢ =0.

We have now to find the magnitudes of L and M. Let S
be the disturbing body and let it move in the direction X to Y.
According to the usual rule in Astronomy, we shall suppose
the longitude / of S to be measured in the direction of motion
from the point on the sphere opposite to B. This point is
usually called the first point of Aries. Then

BS=m—1 and SN=10-}m.
By Art. 487 we have
=—3k(B—C)cosBcosy=—3k (A — C)sin SN cos SN sin

. =3« (4—-C)sinfsin 2!......... (4),
M=-3«(C—4)cosacosy=—3c(C—4)cos*’SNsin O cos §
=—8x(C~A)sin fcosf (1 —cos2l)......... (5).

Since the motion of the disturbing body is very slow com-
pared with the angular velocity of the earth about its axis,
{ and therefore L and M are very nearly constant. If this be
regarded as a sufficiently near approximation we have at once

M

by (2) W, = m y W= m ..................... (6).

That these are the integrals of equations (2) when we take
some account of the variability of L and M may be shown by
substitution in those equations. We see that they are satisfied
if we may neglect such a term as

%:-gx(B—O) {cos@sin 2l§—2+ 28i090092lz—ﬁ}-

Since «(B—C) and df/dt are both small quantities of the
order w, or w,, the first of these terms is of the order o, and
such terms we have already agreed to neglect. The last term
is of the order w,n'/n, where n’ is the mean angular velocity of
the disturbing body about the earth. Rejecting these terms also,
we have by (3), (4) and (5), :

E:—%—Z—,sinesinﬂ

s b .
%:-—g—; (J—E,ilcosO(l—cos%)
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491. To find the motion of the pole of the earth in space
referred to the pole of the orbit of the disturbing body as
origin, we have merely to integrate the equations (7). For a
first approximation, in which we reject the squares of the small
quantities to be found, we may regard @ on the right-hand side
as constant and equal to its mean value. If we write for [ its
approximate value

l=ﬂ'¢+¢',
we find by integration
6= const. + 2%, C= 4 5in f0s 21
4nn’ C
—const— 3%, O=4 00— 3sin2) creeerene(8).
¥=co 2nn' C

493. Another solution. We may also solve equations (3) in the following
manner. Since we reject the squares of the small quantities to be found, we may
in caloulating the values of L and M to a first approximation suppose 8 to be con-
stant and I to be measured from a fixed point in space. We then have by the
theory of elliptic motion

I=w't+ ¢+ Pysin (it +4,) + Py sin (pyt +g5) + &0,
where the coefficients of the trigonometrical terms are all known small quantities,
and all the ooefficients of ¢ are very small compared with #, In the case of the
sun the coefficient of ¢ in the greatest of the trigonometrical terms is y}yn and in
the case of the moon ¢y n. .

‘We may also include in this formula the secular inequalities in the value of .
For, we shall presently tind that 6 has no secular inequalities, and that the first
point of Aries from which ! is measured has a very slow motion which is very
nearly aniform on the plane of the orbit of the disturbing body. This slow motion
may obviously be included in the n'.

It we eliminate w, between equations (2) we have

By Ot _1dL _Cn
F7 A LR O TR
The first term on the right-hand side we have already agreed to neglect. Sub-
stituting in the expression for M given in (5) the value of I, suppose we have
M=3F o008 (\t+f),
where the constant part of M is given by A=0 and all the other valunes of A are
very small. Then solving, we find

M.

FCn
w=-2 g gna 0t e +S)

Since F and A\? are both very small we may reject the small term A% in the

denominator, we then have
wy=- %2F005(X'+f)=—g'.
This result is strictly true for the constant term and very nearly true for the
periodical terms. In the same way we may prove that wy=L/Cn.
When we proceed to find 6 and ¢ from the values of w; and w, by the help of
equations (3), it will be seen that no term will rise on integration in which A is not
small. These rejected terms will not therefore afterwards become important.

1
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493. The integration of equation (7) may be effected without neglecting the
termseontunmgthepowers of ¢ in the expression for I Bythetheoryof

elliptic motion we have R’— =constant =Ry’ \J1—¢7,

whemaveryumnllterm has been rejected on the left-hand side depending on the
motion of Aries. Substituting for « its value given in Art, 487 we find
dg_ 8 1 C-4 A

d="mirs RT——smOnnﬂl }
dy _ 8w 1 c 4 R _ !
A="mmin € miprtl-o®

where » i8 to be put equal to zero when the disturbing body is the sum» From

the equation to the ellipse, we have .

Ry(1-¢€7)_ g
~——R—_l+e cos (I~ L).

If this value of R be substituted in the equations, the integrasions can be effected
without difficulty. But it is clear that all the terms which contain ¢’ are periodic
and do not rise on integration so as to become equally important. with the athers.
Since then ¢ is small, being equal in the case of the sun to about F;, it will be
needless to calculate these terms,

494. Let us now examine the geometrical meanino of the
equations (8). For the sake of brevity, let us put S=g_; C—TA,

3C—-An 3C-An" 1

so that by Art. 487 S— G 30 nwity™
cording as the sun or moon is the disturbing body, the orbit of the
disturbing body being in both cases regarded as circular.

Let us consider first the term —Scos@ in the value of
v¥. Let a point C, describe a small circle round Z the pole of
the orbit of the disturbin planet, the distance CZ being constant
and equal to the mean value of 6. Let the velocity be uniform
and equal to Su'cos fsin 6, and let the direction of motion be
opposite to that of the dlsturbmg body. Then C, represents
the motion of the pole of the earth so far as this term is con-
cerned. This uniform motion is called Precession.

Next let us consider the two terms

80=14Ssinfcos2l, &y =38Scosfsin2l,
If we put =sin 6 8y, y =060, we have
' + v
(3Scosfsinf) ' (38sinf)}
which is the equation to an ellipse.

Let us then deseribe round O, as centre an elli whose
semi-axes are 4 Scosfsinf and & S sin respectwef);eperpen-
dicular to and along ZC'; and let a point C, describe this ellips
in a period equal to half the periodic time of the dlsturbmg

body. Also let the velocity of C; be the same as if it were
a material point attracted by a ‘centre of force in the centre
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varying as the distance. Then C, represents the motion of the
pole of the earth as affected both by Precession and the principal
parts of Nutation.

If we had chosen to include in our approximate values of
0 and ¥ any small term of higher order, we might have repre-
sented its effect by the motion of a point C, describing another
small ellipse having C, for centre. And in a similar manner by
drawing successive ellipses we could represent geometrically all
the terms of 6 and .

495. ‘The Complementary Functions. In this solution
we have not yet considered the Complementary Functions. To
find these we must solve

A%+ Chw, =0, A‘%—Cnm‘=0.
We easily find o, = Hsin (%'t+K), o,=— Hcos (%lt+K).

The quantities H and K depend on the initial values of »,, .
As these initial values are unknown H and K must be deter-
mined by observation. If H had any sensible value it would be
discovered by the variations produced by it in the position of
the pole of the earth. No such inequalities have been found.
If however any such inequality existed we might consider these
two terms together as a separate inequality to be afterwards
added to that produced by the other terms of o,, w,.

496. The effect of the complementary functions on the motion of the pole of
the earth has been already considered in Arts. 180 to 182. The motion is the same
as if the earth were at any instant to be set in rotation about an axis GI making an
angle i with the axis of figure GC and then left {o itself. Here tani=H/n. Let GL
be the invariable line and let v be its inclination to the axis of figure of the earth,
then by Art. 180 tany=tani.4/C. In the case of the earth 4 and C are very nearly
equal, and 1-4/C has been variously estimated to lie between ‘0081 and *0033.
Thus v and { differ by at most y}4th part of either,

As explained in Art. 181, the instantaneous axis describes a right cone in space
whose axis is GL and angular radius i—+y. The time of a complete revolution is
equal to & (siny/sini)th part of the time of a revolution of the earth about its axis,
and is therefore very nearly equal to a sidereal day.

The instantaneous axis also describes & right cone in the earth whose axis is the
axis of figure, viz. GC, and whose angular radius is equal to i. The time of a
complete revolution is equal fo a (sin+/sin (i —y))th part of the time of a revolu-
tion of the earth. It therefore lies between 306 and 325 days, according to the
velue taken for 4/C.

If we construct these two cones (as explained in Art. 167) and make the cone
fixed in the body roll on the cone fixed in space, the motion in space of the axis of
figure of the earth is represented. .

The co-latitude of any place on the earth is found by observing the zenith
distances of a circampolar star S at its superior and inferior transits. Let Z be the
zenith of the place, and at the first transit let the zemith distance observed be
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ZS =gz, At the second transit the directions GC, GZ will have described a semi-
circle round the axis of rotation GI while that axis of rotation will have described a
semicircle about the invariable line GL. In this position let the genith distance
observed be z’. Thus the mean of the two zenith distances z and z’ is the angle ZL,
while half their difference is the angle SL. Since the direction in which the star is seen
and the invariable line are both fixed in space, it follows that the latter angle, which
we may call the north polar distance of the star, is not affected. The former angle
‘differs from the geographical latitude of the place by the angle . Thus in a period
which is equal to about 306 to 325 days the latitude of the place found by these
observations should have altered by twice the angle y and returned to its original
value. As no such periodical changes of latitude have been discovered we must
conclude that the axis of rotation differs from the axis of figure only by an insensible
angle.

497. Numerical results. The preceding investigations are
of course approximations. In the first instance we neglected in
the ditferential equations the squares of the ratios of w, and w,
to m, and afterwards some periodical terms which are an (»'/z)th
of those retained. We see by equations (3) and (8) that the
second set of terms rejected is mueh greater than the first, and
yet when the sun is the disturbing body these terms are only
about 53zth part of those retained, and when the moon is the
disturbing body these are only g;th part of terms which them-
selves are imperceptible.

We have also regarded the earth as a solid of revolution so
that 4 — B may be taken zero, a supposition which cannot be
strictly correct.

498. In the case of the sun we have § =§u i , 80 that
. 3C—-Aw 2 C =
the precession in one year is 5 0 7% 027, It is shown in

treatises on the Figure of the Earth that there is reason to sup-
pose that (C'— A4)/C lies between '0031 and *0033. Also we have
n'/n=3}g, and 6=23".8". This gives a precession of about 15”42
per annum. Similarly the coefficients of Solar Nutation in
and @ are respectively found to be 1”23 and 0"53. If we sup-
posed the moon’s orbit to be fixed, we could find in a similar
manner the motion of the pole produced by the moon referred
to the pole of the moon’s orbit. In this case
S= 3C—-4n" 1

"2 0 nl+v
The value of @ varies between the limits 23° + 5°. Putting
n'/n=q, v=280, § =23°, we find a precession in one year a little
more than double that produced by the sun. But the coefficients
of what would be the nutations are about one-sixth of those
produced by the sun.

499. Motion of the plane of the disturbing body.
We have hitherto considered the orbit of the disturbing body to
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be fixed in space. If it be not fixed, we must take the plane C4

ndicular to its instantaneous position at the moment under
consideration. The quantity 6, will not be the same as before®,
but if the motion of the orbit in space be very slow, 8, will still
be very small We may therefore neglect the small terms 6,0,
and 6,0, as before. The dynamical equations will not therefore
be materially altered. With regard to the geometrical equa-
tions (3) it is clear that w,, », will continue to express the re-
solved parts of the velocity of C in along and perpendicular
to the instantaneous position of ZC. To this degree of approxi-
mation therefore, all the change that will be necessary is to
refer the velocities as given by equations (7) to axes fixed in

and then by integration we shall find the motion of C.
This is the course we shall pursue in the case of the moon.

The attractions of the planets on the earth and sun slightly
alter the plane of the earth’s motion round the sun, so that the
position of the ecliptic in space varies slowly. It can oscillate
nearly five degrees on each side of its mean position. If the earth
were spherical there would be no precession caused by the at-
tractions of the sun and moon. The direction of the plane of the
equator would then be fixed in space, and the changes of its
obliquity to the ecliptic would be wholly caused by the motion of
the (‘a.tter, and wouf()i be very considerable. But, as Laplace re-
marks, the attractions of the sun and moon on the terrestrial
spheroid cause the plane of the equator to vary along with the
ecliptic so that the possible change of the obliquity 1s reduced
to about one and a third degrees which is about one-quarter of
what it would have been without those actions.

At present the obliquity is decreasing at the rate of about
48" per century. After an immense number of years, it will begin
to increase and will oscillate about its mean value. We must
refer the reader to the second volume of the Mécanique Céleste,
livre cinquidme. He may also consult the Connarssance des
Temps for 1827, page 234.

500, Bmxamples. Ex. 1. If the earth were a homogeneous shell bounded by
similar ellipsoids, the interior being empty, the precession would be the same as if
the earth were solid throughout. .

Ex. 2. If the earth were a homogeneous shell bounded externally by a spheroid
and internally by a concentric sphere, the interior being filled with a perfect fluid

* The value of 6, may be found in the following manner. The orbit at any
instant is turning about the radius vector of the planet as an instantaneous axis.
Let u be this angular velocity which we shall suppose known, Let Z, Z’; B, B'be
two successive positions of the pole of the orbit and the extremity of the axis of B
respectively. Then ZB=a right angle=Z'B’, Hence the projections of ZZ’, BB/,
on ZB are equa‘.\l. This gives, since ZB is at right angles to both CZ and SB,
BSB'sin BS=2ZCZ'sin ZC. Now the angle ZCZ'=- 36, and the angle BSB' =1,
hence 30, . 8in§ =~-usinl, The value of 36; must be added to the former value of ;.
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of the same density as the earth, show that the precession would be greater than if
the earth were solid throughout.

Let (a, a, ¢) be the semi-axes of the spheroid, r the radius of the sphere. Then
since the precession varies as (C~4)/C by Art. 494, the precession is increased in
the ratio a‘c: atc - 1%,

Ex. 8. If the sun were removed to twice its present distance show that the
solar precession per unit of time would be reduced to one-eighth of its present
value; and the precession per year to about one-third of its present value.

Ex. 4. A body turning about a fixed point is acted on by forces which tend to
produce rotation about an axis at right angles to the instantaneous axis, show that
the angular velocity cannot be uniform unless the momental ellipsoid at the fixed
point is a spheroid.

The axis about which the forces tend to produce rotation is that axis about
which it would begin to turn if the body were placed at rest.

Ex. 5. A body free to turn about its centre of gravity is in stable equilibrium
under the attraction of a distant fixed particle. Show that the axis of least
moment is turned toward the particle. Show also that the times of the

.. J— . Bp? i Cp® i
principal oscillations are respectively 2« W-—A)} and 2» {3T(B—_A)} .

If the body be the earth and M’ be the sun, show that the smaller of these two
periods is about ten years.

501. To give a general explanation of the manner in which
the attraction of the Sun causes Precession and Nutation.

In order to explain the effect of the sun’s attraction on the
earth it will be convenient to refer to Poinsot’s construction for
the motion of a body described in 144 and the following articles.

If a body be set in rotation about a fixed point O under the
action of no forces, we know that the momenta of all the particles
are together equivalent to a couple which we shall represent by @
about an axis OL called the invariable line. Let I’ be the Vis
Viva of the body. If a plane be drawn perpendicular to the axis
of @ at a distance €' ,/MT/G from the fixed point, then the whole
motion is represented by making the momental ellipsoid whose
parameter is e roll on this plane. In the case of the earth, the
axis OI of instantaneous rotation so nearly coincides with OC the
axis of figure that the fixed plane on which the ellipsoid rolls is
very nearly a tangent plane at the extremity of the axis of figure.
This is so very nearly the case that we shall neglect the squares
of all small terms depending on the resolved part of the angular
velocity about any axis of the earth perpendicular to the axis of
figure.

guLet us now consider how this motion is disturbed by the action
of the sun. The sun attracts the parts of the earth nearer to it
with a slightly greater force than it attracts those more remote,
Hence when the sun is either north or south of the equator its
attraction will produce a couple tending to turn the earth about
that axis in the plane of the equator which is perpendicular to
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the line joining the centre of the earth to the centre of the sun.
Let the magnitude of this couple be represented by a, and let us
suppose that it acts impulsively at intervals of time dt.

At any one instant this couple will generate a new momentum
adt about the axis of the couple @ This has to be compounded
with the existing momentum @, to form a resultant couple G'.
If the axis of a were exactly perpendicular to that of G we should
bave @ = /@ + (adt)’ = G ultimately.

Let 6 be the angle that the axis of ¢ makes with OC, then
6 18 a quantity of that order of small quantities whose square is
to be neglected. Taking the case when OC, the axis of G, and
-the axis of a are in one plane, for this is the case in which G’ will
most differ from @, we have

G*=(G@cos 0)*+ (G sin 0 + adt)*
=G +2Gasinfdt ..........cueuuuen........ (1).

Then a and 8 being of the same order of small quantities, the
term asin @ is to be neglected. Hence we have G'= G. But the
axis of G is altered in space by an angle adt/@ in a plane passing
through it and the axis of a.

. Next let us consider how the Vis Viva T is altered. If 7" be
the new Vis Viva we have

T’ — T'=twice the work done by the couple a
=22(@co8B) db ccuueeniiiniiiiniiiniinnaans 2),

where wcosB is the resolved part of the angular velocity about
the axis of a. For the same reason as before the product of this
angular velocity and a is to be neglected. Hence we have 7" =T.

It follows from these results that the distance ¢*\/MT/G of the
fixed plane from the fixed point is unaltered by the action of a.

Thus the fixed plane on which the ellipsoid rolls keeps at the
same distance from the fixed point, so that the three lines OC,
OI, OL being initially very near each other will always remain
very close to each other. But the normal OL to this plane has
a motion in space, hence the others must accompany it. This
.motion is what we call Precession and Nutation.

Lastly these small terms which have been neglected will not
continually accumulate so as to produce any sensible effect. As
the earth turns round in one day, the axis OC will describe
a cone of small angle 8 round OL. The axis about which the sun
generates the angular velocity a is always at right angles to the
plane containing the sun and OC. Hence, regarding the sun as
-fixed for a day, the angle 8 in equation (1) changes its sign every
half day. Thus @ is alternately greater and less than G. Simi-
larly since the instantaneous axis describes a cone about OL it
may be shown that 7" is alternately greater and less than T.
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502. Solar Precession and Nutation. The three axes in
the earth which are the most important in our theory are (1) the
axis of figure 0C, (2) the instantaneous axis of rotation O, (3) the
invariable line OL. It has just been proved in the last article
that if these three be at any one instant very nearly coincident
with each other they will, notwithstanding the sun’s attraction,
always remain very close together. It will therefore be sufficient
for our present purpose to find the motion in space of any one of
the three.

Let OA, OB be two perpendicular axes in the earth’s equator
and let the earth turn round OC in the positive direction AB.
Let the sun S at the time ¢ be in the plane COA and on the
positive or north side of the equator. The sun’s attraction during
the time d¢ generates a couple adt about the axis OB which acts
in the negative direction 4C. It follows from the last article
that OL (which is very nearly coincident with OC) moves in space
in the plane BOC with an angular velocity equal to a/@ in the
-direction BC. Since the sun moves round O in the same direction
that the earth turns round its axis OC, it follows that when a is
positive, the axes OL and OC move very nearly at right angles to
the plane COS in a direction opposite to the sun’s motion.

Knowing the motion produced in these axes by the sun in the
‘time df, we now proceed to sum up the whole effects produced by
the sun in one year. For simplicity we shall speak only of the
axis of figure, viz. OC.

Describe a sphere whose centre is at O -and let us refer the

Ry

N

y

motion to the surface of this sphere. Let K be the pole of the
ecliptic and let the sun S describe the circle DEFH of which K
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is the pole. Let DF be a t circle perpendicular to XC, then
since OC and the axis of Egure of the earth are so close that we
may treat them as coincident, D and F' will be the intersections of
the equator and ecliptic. 'When the sun is north or south of the
equator, its attraction generates the couple a, which will be
positive or negative according as the sun is on one side or the
other. This couple vanishes when the sun is passing through the
uator at D or F. If the sun be anywhere in DEF, ie. north
of the equator, C is moved in a direction perpendicular to the
arc CS towards D. If the sun be anywhere in FHD, a has the
opposite sign and hence C is again moved perpendicular to the
instantaneous position of CS but still towards D. Considering
the whole effect produced in one year while the sun describes the
circle DEFH, we see that C will be moved a very small space
towards D, ie. in the direction opposite to the sun’s motion.
Resolving this along the tangent to the circle centre K and radius
KO, we see that the motion of O is made up of (1) a uniform
motion of O along this circle backwards, which is called Preces-
sion and (2) an inequality in this uniform motion which is one
part of Solar Nutation. Xin.in as the sun moves from D to E, C
18 moved inwards so that the distance KC is diminished, but as
the sun moves from E to F, KC is as much increased. So that
on the whole the distance KC is unaltered, but it has an in-
equality which is the other part of Solar Nutation.
It 18 evident that each of these inequalities goes through its
period in half a year.

503. Lunar Nutation. 7o explain the cause of Lunar
Nutation.

The attraction of the sun on the protuberant parts at the
earth’s equator causes the pole C of the earth to describe a small
circle with uniform velocity round K the pole of the ecliptic with
two inequalities, one in latitude and one in longitude, whose period
is half a year. These two inequalities are called Solar Nutations.
In the same way the attraction of the moon causes the pole of the
earth to describe a small circle round M the pole of the lunar
orbit with two inequalities. These inequalities are very small
and of short period, viz. a fortnight, and are therefore generally
neglected. Aﬁethat is taken account of is the uniform motion
of C round M. Now K is the origin of reference, hence if M
were fixed the motion of C round M would be represented by a
slow uniform motion of C round K together with two inequalities
whose magnitude would be equal to the arc MK, or 5 degrees,
and whose period would be very long, viz. equal to that of C
round K produced by the uniform motion. But we know by
Lunar Theory that M describes a circle round K as centre with
a velocity much more rapid than that of C. Hence the motion
of C will be represented by a slow uniform motion round K,
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together with two inequalities which will be the smaller the
greater the velocity of M round K, and whose period will be nearly
equal to that of M round K. This period we know to be about
19 years. These two inequalities are called the Lunar Nutations.
It will be perceived that their origin is different from that of
Solar Nutation.

504. To calculate the Lunar Precession and Nutation.

Let K be the pole of the ecliptic, M that of the lunar orbit,
C the pole of the earth. Let KX be any fixed arc, KC=6,
XKC =+, then we have to find 6 and 4 in terms of ¢&. By
Art. 494 the velocity of C in space is at any instant in a direction
perpendicular to MC, and equal to
MM C-—4 1

-— ?77 —C— m cos M 'sin MC.

For the sake of brevity let the coefficient of cos MC'sin MC
be represented by P. Then resolving this velocity along and
perpendicular to XC, we have

db/dt=— Psin MC cos MC sin KOM
8in @ dyr/dt = — Psin MC cos MCcos KCM ) *

By Lunar theory we know that M regredes round K uniformly,
the distance KM remaining unaltered. Let then KM =1, and
the angle XKM = —mt + a. Now by spherical trigonometry,

cos MC = cos ¢ cos § + sin ¢sin § cos MK C,
sin MC cos KOM=22*" C?SMOCOSO
sin @
=cos ¢sin § —sin ¢ cos 8 cos MK C,
sin MC.sin KCM =sin ¢ sin MKC.
Substituting these we have
d0/dt =— P {sin ¢ cos ¢ cos 8 sin WK C + } sin’s sin 6 sin 2MK (]},
sin @ dvr/dt = — P {sin 6 cos 8 (cos's — } sin’?)
—sin ¢ cos ¢ cos 20 cos MK C — } sin*¢sin 6 cos 8 cos 2MK C}.

For a first approximation we may neglect the variations of 6
and y when multiplied by the small quantity P. Hence d6/d¢
contains only periodic terms, and the inclination § has no per-
manent alteration. But dyr/dt contains a term independent of
MKQC; considering only this term, we have

v = constant — P cos 8 (cos*s — § sin’?) .

This equation expresses the precessional motion of the pole
due to the attraction of the moon. We may write this equation
in the form r =y, — pt.

To find the nutations, we must substitute for MKC its ap-
proximate value MKC=(—m+p)t+a—Y,.
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We then have after integration
0 = const. _Psmccosz cosocos MEC— Psin*ssin 0 cos 2MEC.
m—p 4 (m — p)
K
M

The second of these two periodic terms being about one-
fiftieth part of the first, which is itself very small, is usually
neglected. Also p is very small compared with m, hence we have

0=00_Psini(::sicosocosMKa

This term expresses the Lunar Nutation in the obliquity.

In the same way by integrating the expression for 4, and
neglecting the very small terms, we have
-sin MKC.

Y =+,— Pcosf (cos't—} sin’?) ¢t - P om " smd

The angle MKC is the longitude of the moon’s descending
node, and the line of nodes is known to complete a revolution
in about 18 years and 7 months. If we represent this period by
T we have MKC = — 2wt/ T'+ constant.

The pole M of the lunar orbit moves round the point of re-
ference K with an angular velocity which is rapid compared with p,
but yet is sufficiently small to make the Lunar Nutations greater
than the Solar. We may also notice that if M had moved round
K with an angular velocity more nearly equal to » the Nutations
would have been still larger. This may explain wﬁy a slow motion
of the ecliptic in space may produce some corresgonding nutations
of very long period and of considerable magnitude.

sin 27 cos 26 .

Motion of the Moon about its centre of gravity.

505. In discussing the precession and nutation of the equinoxes, the earth has
been regarded as a rigid body two of whose principal moments at the centre of
gravity are equal to each other. One consequence of this supposition was that the
rotation about the axis of unequal moment is not directly altered by the attraction
of the disturbing bodies. As an example of the effect of these forces on the
rotation when all the three principal moments are unequal, we shall now consider
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the case of the moon as disturbed by the atiraction of the earth, As our object is:
to examine the mode in which the forces alter the several motions of the moon

about its centre of gravity rather than to obtain arithmetical results of the greatest

possible accuracy, we shall separate the problem into two. In the first place we

shall suppose the moon to describe an orbit which is very nearly circular in a plane

which is one of the principal planes at its centre of gravity. In the second case we

shall remove the latter restriction and examine the effects of the obliquity of the

moon’s orbit to the moon’s equator.

506. The moon describes an orbit about the centre of the earth which is very
nearly circular. Supposing the plane of the orbit to be one of the principal planes
of the moon at its centre of gravity, find the motion of the moon about its cenire of
gravity.

Let G4, GB, GC be the principal axes at G the centre of gravity of the moon,
and let GC be the axis perpendicular to the plane in which G moves. Let 4, B, C
be the moments of inertia about G4, GB, GC respectively, and let M be the mass
of the moon, and let accented letters denote corresponding quantities for the -
earth,

Let O be the centre of the earth, and let Oz be the initial line. Let 0G=r,
GOz =0. Let us suppose the moon turns round its axis GC in the same direction
that the centre of gravity desoribes its orbit about O, and let the angle 0G4 =¢.

The mutual potential of the earth and moon is by Art. 486

- ’ ’ ’ Y d _
V=Min sy AHB+O-8L L, A+B+C-8I

2 23

0 = z

Here I=A4cos*¢+Bsin?¢ and therefore the moment of the forces tending to
turn the moon round GC is
av 3 B
a;f.g_-z-,—i(B—-A)sm?«p .............................. .
Since #+¢ is the angle which GA, a line fixed in the body, makes with Oz, a
line fixed in space, the equation of the motion of the moon round GC is
@0 d'¢_ 8M'B-A .
d—t’ W—_E—F—C Bm2¢ .............................. (2).
The motion of the centre of gravity of the moon referred to the centre of the
earth as a fixed point is found in the Lunar Theory. It is there shown that r and
6-may be expressed in the form

r=c{1+ L cos(pt+a)+&e.},

%=n+ﬁt+Mncos(pt+a)+&c.,
where St is a very small term which represents a secular change in the moon’s
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angular velocity about the earth, and is really the first term of the expansion of &
trigonometrical expression.
It we substitute the value of d6/d¢ in equation (2) we have the following equation
to determine ¢,
de_ 1,
B="31 8in 2¢ - B+ npM sin (pt +a) + &0. .c....ouvneernennnnee 3),
8B-4 A q’
=3
Now we knowbyobiernhonthatthomoonnlwaystumltheumelaoetowuds
the earth, so that amongst the various motions which may result from different
initial conditions, the one which we wish to examine is characterized by ¢ being
nearly constant. Let us then introduce into this equation the assumption that ¢
is nearly constant; we may then deduce from the integral how far this assumption
is compatible with any given initial conditions which we may suppose to have been
imposed on the moon. Putting ¢=g¢,+ ¢', where ¢, is supposed to contain all the
oconstant part of ¢, we easily find
j¢*sin2g,=-p

PN e

wbunlowthoukooﬂmutywohuopntn’

Solving the second equation, we find,
= Hnn(qt+K)+¢.+llm2-¢—?un(pt+¢)+&c. ............ (5),

where H and K are two arbitrary constants whose values depend on the initial con-
ditions. The angular velocity of the moon about its axis is therefore given by the
formula

:—:+%=n+pt+ﬂqoos(qt+K)+Mq:lz“ °°2;f"° 008 (pt+a) 4 8o......0).

In this investigation the axis G4 which makes the angle ¢ with the radius
vector GO drawn to the earth may be either of the principal axes in the moon’s
equator. If we choose GA to be that axis whose mean position makes the lesser
angle with the radius vector GO, the quantity cos 2¢, will be positive. The quantity
q* will be positive or negative according as that axis G4 has the least or greatest
moment. In the solution just written down gq* has been taken to be positive.

If g were negative or gero, the character of the solution of (3) would be altered.
In the former case the expression for ¢ would contain real exponentials. If the
initial conditions were 80 niocely adjusted that the coefficient of the term containing
the positive exponent were zero, the value of ¢’ would still be always small. But
this motion would be unstable, the smallest disturbances would alter the values of
the arbitrary constants and then ¢’ would become large. If we also examine the
solution when ¢?=0, we easily see that ¢' could not remain small. The comple-
mentary function would then take the form Ht+K and as before some small -
disturbance might cause ¢’ to become great. We therefore infer that of the axes
G4, GB of the moon, the axis of least moment is turned more towards the earth
than the other and that these two principal moments are not equal.

In order that the expression (5) for ¢ may represent the actual motion it is
neoessary and sufficient that H when found from the initial conditions should
be small, We see, by differentiation, that Hg is of the same order of small
quantities as d¢/dt. Hence H will be small if at any instant the angular velocity,
viz, df/dt+dg/dt, of the moon about GC were 8o nearly equal to the angular
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velocity, viz. d6/dt, of its centre of gravity round the earth, that the ratio of the
difference to g is very small.

‘We see from the first of equations (4) that the magnitude of the constant angle ¢,
which the axis of least moment in the moon’s equator makes with the radius vector
&GO drawn to the earth depends on the ratio 28/¢%. The value of g is found in the
Lunar Theory and is known to be extremely small. The numerical value of g? depends
on the structure of the moon and is not properly known. Its value can only be found
by comparing the results of this or some other investigation with observation.
The first of equations (4) shows that 28 must be less than ¢% So that unless the
moments of inertia A and B in the moon are sufficiently unequgl to satisfy this
condition the moon could not move 8o as always to turn the same face to the earth,

If we enquire what can be the physical cause of the difference between the
moments of inertia about the two principal axes in the moon’s equator we naturally
think of the attraction of the earth on that body. This attraction, either in the
past or in the present time, would tend to lengthen that diameter which is directed
to the earth, Taking the suppositions usually made in the theory of the Figure of

_ the Earth, Laplace has attempted to deduce from this the value of g2 The only
result we are here concerned with is that the ratio 28/¢? is so small that we may
reject its square. Assuming this, we see that ¢, must also be very small. It
follows also that we may write —g[q? for ¢, and unity for cos 2¢, in equations
(5) and (6). .

If therefore we suppose the moon at any instant to be moving with its axis of
least moment pointed towards the earth and its angular velocity about its axis of
rotation to be nearly equal to that of the moon round the earth, then the axis of
least moment will continue always to point very nearly to the earth. The mean
angular velocity of the moon about its axis will immediately become equal to that
of the moon about the earth and will partake of all its secular changes. This is
Laplace’s theorem. It shows that the present state of motion of the moon is
stable, rather than explains how the angular velocity about the axis came to be so
nearly equal to the angular velocity about the earth.

507. By comparing the value of the angular velocity of the moon about its
axis obtained by theory with the results of observation, we may hope to obtain
some indications of the value of ¢* and thence of (B-4)/C. If the term
Hgcos (qgt+K) could be detected by observation, we should deduce the value of
(B - 4)/C from its period.

Among the other terms of the expression for the angular velocity of the moon
about its axis, those will be best suited to discover the value of ¢ which have the
largest coefficients, that is those in which either the numerator M is the greatest
or the denominator g2- p? the least possible. By examining the numerical value of
their coefficients Laplace has shown that if (B — 4)/C were as great as ‘03 the elliptic
inequality could be recognized by observation, and if it were between 0014 and ‘003
the annual equation could be observed.

508, Motion of the centre of gravity of the Moon. We may also deduce
from the potential given in Art. 506 the radial and transverse forces which act on
the centre of gravity of the moon due to the mutual attractions of the earth and
moon. Since the principal moments of the moon are nearly equal and its linear
size small compared with its distance from the earth, these forces are very nearly
the same as if the moon were collected into its centre of gravity. The effect of the
small forces neglected by this assumption will be insignificant compared with the

- R.D. IL 19
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other foroes which act on the centre of gravity of the moon. The motion of the
ocentre of gravity of the moon is therefore very nearly the same ue if the whole mass
were ocolleeted into its centre of gravity.

Since however there are no other foroes which have a moment round GC besides
those found above, the effect of these may be perceptible. The effects of tidal
friction on the rotation of the moon may be omitted, at least at the present time.

Ex. The centre of gravity G of a rigid body describes an orbit which is
nearly circular about a very distant fixed centre of forcea O attracting aceording
to the Newtonian law and situated in one of the principal planes through G. If
r=c(l+p), 0=ut+ny be the polar co-ordinates of G referred to O, show that the
equations of motion are

dt

2%+ ‘f‘—’=gwdn2¢ ,

‘;:f +n :—’?a - 9—’ 8in 2¢
2C-4A-B
wheu-y-T, Y= Si "

‘We may notice that the values of y and 4’ are much smaller than ¢? and might
therefore be rejected in a first approximation.

If the body always turns the same face to the centre of force so that ¢ is
nearly constant and is small, show that there will be two small inequalities in the
value of ¢ of the form L sin (pt +a), where p is given by

(p?-n%) (p? - ¢%) ~ 3n%y (p*+ 30%) =0,
one of these periods being nearly the same as that of the body round the centre
of force and the other being very long. .

If the body turns very nearly uniformly round its axis GC, so that ¢=n't+¢
nearly, show that there will be two small inequalities in the value of ¢, one in
which p=n and another in which p=2n’.

57"-3» w———-- —u’-yooe2¢

509. Examples. Ex. 1. Show that the moon always turns the same face
very nearly to that focus of her orbit in which the earth is not situated. [Smith’s
Prize.]

Ex. 2. If the centre of gravity G of the moon were constrained to describe a
circle with a uniform angular velocity » about a fixed centre of force O attracting
according to the Newtonian law; show that the axis GA of the moon will oscillate
on each gide of GO or will make complete revolutions relatively to GO according
as the angular velocity of the moon abeut its axis at the moment when GA and GO
coincide in direction is less or greater than n+g where ¢ has the meaning given
to it in Art. 506. Find also the extent of the oscillations.

Ex. 3. A particle m moves without pressure along a smooth circular wire of
mass M with uniform velocity under the action of a central force situated in the
centre of the wire attracting according to the law of nature, Show that this system
m 8+12,J6

2%
to the particle or the wire, tbe centre of force remaining fixed in space.

Ex, 4.. A uniform ring of mass M and of very small section is loaded with a
heavy particle of mass m at a point on its circumferenee, and the whole is in

of motion is stable 1f The disturbance is supposed to be given
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uniform motion about a centre of force attracting according to the law of nature,
Show that the motion cannot be stable unless m/(} +m) lies between 815865 and
8279.

This example shows (1) that if & ring, such as Saturn’s ring, be in motion
about a centre of force, its position cannet be stable, if the ring be uniform; and
(2) that if, to render the motion stable, the ring be weighted, a most delicate
adjustment of weights is necessary. A very small change in the distribution of
the weights would change a stable combination to one that is unstable. This
example is taken from Prof. Maxwell’s Essay on Saturn’s Rings.

Ex. 5. Thecentre of gravity of a body of mass M, symmetrical about the plane of .
zy, is G; and O is a point such that the resultant attraction of the body on O is
alonig the line GO. Then if the body be placed with O coinciding with a fixed
cenire of force S, and be set in rotation about an axis through O perpendicular to
the plane of zy with an angular velocity w, G will, if undisturbed, revolve uniformly

* in a circle, always turning the same face towards O, provided Maw?! is equal to the
resultant attraction along GO, where a is the distance GO. It is required to
determine the conditions that this motion should be stable.

The motion being disturbed, O will no longer coincide with the centre of force
S. Let two straight lines at right angles revolving uniformly roand S as origin
with an angular velocity w be chosen as co-ordinate axes, and let z be initially
parallel to OG. Let (z, y) be the co-ordinates of O, ¢ the angle OG makes with
the axis of z, then z, y, ¢ are all small. Let ¥ be the potential of the body at O,
and let d*V/dz%=a, d?V/dzdy=1y, d*V/dy*=p. Let S be the amount of matter in
the centre of force. The equations of motion of a particle referred to axes moving
in one plane round a fixed origin are given in Vol. 1. These equations may also be
deduced from Arts. 4 and 5 of this volume by putting ;=0 and ,=0. In this way
the equations of motion of G reduce to

a2 S d 8 d
(Ez—,—a"—i-la z-(2aa+ﬁ‘y)y—2ma¢=0,
d S as S a2
(2«-22—ji-y)x+(d—t;-w’—ﬂﬁ)y+aa?¢.—0,
and the equation of angular momentum about S will lead to
d . d
2m+aay+(a +k’)22¢_0'

where k is the radius of gyration of the body about O. Combining these equations
as a determinant and reducing we find that the differential equation in £, 9, or ¢
. as as

is of the form Ad—”+Bd—t,+C=0.

The condition of stability is that the roots of this equation should be real and
negative. Hence 4, B, C must be of the same sign and B?>44C. This pro-
position is due to Sir W. Thomson and is given in Prof. Mazwell’s Essay on Saturn’s
Rings.

510. Laplace's theorem on the BMioon’s equator. The motion of a rigid
body about a distant centre of force has been investigated on the supposition that
the motion takes place entirely in one plane. We see by equation (2) of Art. 506
that the case in which the centre of gravity describes a circular orbit, and the rigid
body always turns & principal axis towards the centre of force, is one of steady
motion. The preceding investigation also shows that this motion is stable for all
disturbances which do not alter the plane of motion, provided the moment of

19—2
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inertia about that principal axis which is directed towards the eentre of force is less
than the moment of inertia about the other principal axis in the plane of motion.
It remains now to determine the effect of these disturbances in the more general
case when the motion takes place in three dimensions.

The whole attraction of the centre of force on the body is equivalent to a single
force acting at the centre of gravity, and a couple. If the size of the body be small
compared with its distance from the centre of force, we may neglect the effect of the
motion of the body about its centre of gravity in modifying the resultant force.
The motion of the centre of gravity will then be the same as if the whole were
collected into a single particle. The problem is therefore reduced to the following.
A rigid body turns about its centre of gravity G, and is acted on by a centre of
force E which moves in & given manner. In the case in which the rigid body is
the moon, this centre of force, i.e. the earth, moves in a nearly circular orbit in a
plane which itself also has a slow motion in space. This motion is such that a
normal GM to the instantaneous orbit describes a cone of small angle about a
normal GK to the ecliptic. The two normals maintain a nearly constant in-
clination of about 5°.8'; and the motion of the normal to the instantaneous orbit
is nearly uniform,

511. It will clearly be convenient to refer the motion to axes GX, GY, GZ
fixed in space such that GZ is normal to the ecliptic. Let G4, GB, GC be the
principal axes of the moon at the centre of gravity G. Let (p, ¢, ) be the direction-
cosines of GZ referred to the co-ordinate axes G4, GB, GC. Then we have by
Art. 9, since GZ is fixed in spaoce,

dp _ dq _ dr_ _
E—o,q+w,r-0, a;—olr-l-w,p_o, at wp+wyg=0....... @.
Let GC be the axis of rotation of the moon, and as before let the moment of

inertia about G4 be less than that about GB.

Now our object is to find the small oscillations about the state of steady motion
in which GZ, GC, GM all coincide. 'We shall therefore have p, q, w,, w, all small,
and 7 very nearly equal to unity. The equations (I) will therefore become

ap - dq = '
E—np{-w,—o, E‘——wl-knp—O,
where n is the mean value of wg,

Let \, u, » be the direction-cosines of the centre of force E as seen from G.
Then we have by Euler’s equations and Art, 487,

4% B_0)uuy= -2 (B-O)wr

BLS_ (0 4) o= -8 (C-A)A | (I,
% _(4_ B) o= -3n7(4

¢~ 4 - B) = —3n"(4 - B)\u

In the case of steady motion, the rigid body always turns the axis (G4) of lesser
moment towards the centre of force, and wy=n". We have then both x and » small
quantities, so that in the first equation we may neglect their product u», and in
the second equation we may put »A=». Also, we may put wg=n=n' in the small
terms. ) )

If 1 be the latitude of the earth as seen from the moon, we have

sinl=cos ZE=p\+qu+7rv=p+» nearly.
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Hence the two first of Euler’s equations take the form
4% _(B_cymu,=0

B%_(C_A),...,F_sn’(a—A)(—pHin’)

If the earth, as seen from the moon, be supposed to move in a circular orbit in
a plane making a constant inelination tan—!k with the ecliptic, and the longitude
of whose node is - gt + 8, we shall have
- sin l=ksin ('t + gt - B).
In this expression g measures the rate at which the node regredes, and is about
the two hundred and fiftieth part of n. We shall therefore regard g/n as a small
quantity.

aa

To solve these equations, it will be found convenient fo substitute for w,, w,
their values in terms of p, g. 'We then have

% dp =
‘471?+(A+B-0)n33-"’(ﬂ_0)q_0

Bz—’—g—(A +B-C)ng-:l+4n’(0-4)p=3m’(0—4)sinl
To find p, g, let us put p=Psin {(n'+g)t-B}, g=Qcos{(n'+g)t-8},
where P, Q are some constants to be determined by substitution in the equation.
Wo have &14(n+9)'+(B-C)n*}=P(d+B-C)n(n+g) |
P{B(n+g)-4(C-4)n*} -Q(4+B~C)n(n+g)= -3k (C-4)f *

‘We may solve these equations to find P and Q accurately. In the case of the
A-B B-C C-4 .g

¢ 4 ' B and ;‘areal]small. If then we neglect the
products of these small quantities, the first equation gives us Q/P=1-g/n., The
second equation will then give

moon the ratios

P= 3nk (C - 4)
“8nC-4)-2Bg"
As g is very small compared with n, we may regard P and Q as equal.
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- 512. The complementary functions may be found in the usual manner by
assuming p=Fgin (st+ H), q=Gcos(st+H),
on substituting we have the quadratic

ABs* - {(A+B-C)'-B(B-C)-44(4~C)} n%'+4 (4-C)(B-C)n*=0,
G (A+B-O)ns

to find &2, and P A8+ (B-C)m’ ‘
to find the ratio of the coefficients of corresponding terms in p and ¢q. If the roots
of this equation were negative p and g would be represented by exponential values
of t, and thus they would in time cease to be emall. It is therefore necessary for
stability that the coefficient of &* should be negative and the product (4 — C) (B - C)
positive. Both these conditions are probably satisfied in the case of the moon.
For since B~ C and 4 ~ C are both small, the term (4+B - C)? is much greater
than the two other terms in the coefficient of s3, Also, since the moon is flattened
at its poles, we shall probably have 4 and B both less than C.

513. Let M be the pole of the moon's orbit, which is the same as that of the
earth’s orbit a8 seen from the centre of the moon. Then M is the pole of the
dotted line in the figure of Art. 511. Therefore the angle EZM measured by
turning ZE in the positive direction round Z untjl it comes into coincidence with
ZM, is = §xr-{(n+g)t-p}. Again, if the angle EZC be measured in the same
direction, we have
coBEC~-co8 CZcos ZE _v—r(pA+qu+m)  —p

sin CZ gin ZE - Jp’:?’sinZE —Jpﬁ+qz

Hence we easily find sin EZ0=——3__,

N&Xs
But 8in CZM=sin EZM cos EZC-cos EZM sin EZC
_cosi(n+g)t—Bip-sin{(n+g)t—-Biq
N/ZTd

If now we substitute for p and ¢ their values, it is clear that the terms in p and
q, whose argument is n +g, disappear. So that if F and G were zero, the sine of
the angle CZM weuld be absolutely zero. In this case the three poles C, Z, M
mast lie in an arc of a great circle, or, which is the same thing, the moon’s equator,
the moon’s orbit, and the ecliptic must cut each other in the same line of nodes.

If however F and G be not zero, but only very small, we have

gin CZM= ZF'sin (s't+ H') ,
A/ P3+2G%sin (¢t + H').
where F¥, G’ contain either F or @ as a factor, and are therefore small. If then F
and G be both small compared with P, the angle €ZM will remain either always
small or always nearly equal to .

The intersection of the moon’s equator with the ecliptic will then oscillate about
the intersection of the moon’s orbit with the ecliptic as its mean position. Since
these oscillations are insensible, it follows that in the case of nature, the com-

plementary functions must be extremely small compared with the terms depending
directly on the disturbing force.

514, If we disregard the complementary functions we have p=P sin ¢,
g=Pcos ¢, where ¢p=(n'+g)t—8. Now sin?CZ=p?+q3; therefore CZ= - P very
nearly. The value of CZ, the inclination of the lunar equator to the ecliptic, is
known to be about 1°.28'. Hence, since g/n='004, we may deduce from the ex-
pression for P af the end of Art. 511 an approximation to the value of (C-4)/B.

C-4
5= 000599.

cos EZC= , nearly.

In this manner Laplace finds
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MOTION O